Universität Tübingen

The polarized photon content of the nucleon

Single-inclusive photon production in lepton-nucleon scattering

 $\ell(l)N(P) \to \gamma(p_{\gamma})X$

2/16/2023

Table of Contents

- Introduction/Motivation
- Calculation
 - Bethe Heitler
 - Compton
 - Interference
- Plots
 - EIC
 - JLab

• Summary

Introduction/Motivation Why $\ell N \rightarrow \gamma X$?

 \rightarrow Access to (poorly known) soft photonic functions!

Introduction/Motivation Why $\ell N \to \gamma X$?

- c.o.m. energies of 100 GeV or higher are possible at a future Electron-Ion Collider (EIC)
- Fixed target experiments including an electron beam energy of 24 GeV with possible upgrade at Jefferson Lab (JLab)

 \rightarrow Very large range of kinematic setups can be tested in future experiments

• Access to higher twist correlation functions through transverse spin observables, like the transverse single spin asymmetry (SSA)

Calculation

- Fully analytic results for σ , $\Delta\sigma$ and A_{LL}
- Dimensional regularization with $d = 4 2\varepsilon$
- Calculation up to $\mathcal{O}(\alpha_{em}^{3})$ (LO)
- Light-cone gauge $n \cdot A = 0$
- All external particles are assumed to be massless
- Cross section can be written as the sum of 3 parts characterized by what power of e_q they are proportional to

Direct BH Channel

$$\Phi_{ij}(P,S;x) \equiv \int_{-\infty}^{\infty} \frac{d\lambda}{2\pi} e^{i\lambda x} \langle N(P,S) | \bar{q}_j(0) \mathcal{W}[0;\lambda n] q_i(\lambda n) | N(P,S) \rangle$$

$$= \frac{1}{2} \left(\not P f_1^{q/N,\overline{\text{MS}}}(x,\mu) - S_L \not P \gamma_5 g_1^{q/N,\overline{\text{MS}}}(x,\mu) + \dots \right)_{ij}$$

$$\bullet \text{ The partonic scattering is purely}$$

- The partonic scattering is pull QED
- The lepton propagator can produce a pole when the photon is emitted collinearly
- \rightarrow Can be avoided by keeping a non-zero lepton mass

k

 p_{γ}

r-k

r-k

r

γPDF Channel Soft Emission Part

γPDF Channel Soft Emission Part

Translating the last slide into mathematical expressions yields a photon-photon correlator

$$\phi^{\mu\nu}(x) \equiv \int_{-\infty}^{\infty} \frac{\mathrm{d}\lambda}{2\pi} e^{i\lambda x} \langle N(P,S) | F^{n\nu}(0) F^{n\mu}(\lambda n) | N(P,S) \rangle$$

= $\frac{x}{2} \left(-\frac{g_{\perp}^{\mu\nu}(P)}{1-\varepsilon} f_{1,bare}^{\gamma/N}(x) + iS_L \epsilon^{Pn\nu\mu} g_{1,bare}^{\gamma/N}(x) + \dots \right)$

$$f_{1,bare}^{\gamma/N}(x,\mu) = \frac{\alpha_{em}}{2\pi} \frac{S_{\varepsilon}}{\varepsilon} \int_{x}^{1} \frac{\mathrm{d}w}{w} P_{\gamma q}(w) f_{1}^{BH,\overline{\mathrm{MS}}}\left(\frac{x}{w},\mu\right) + f_{1}^{\gamma/N,\overline{\mathrm{MS}}}(x,\mu)$$

$$P_{\gamma q}(w) \equiv \frac{1 + (1 - w)^2}{w} \qquad f_1^{BH, \overline{\text{MS}}}(x, \mu) \equiv \sum_q e_q^2 \left(f_1^{q/N, \overline{\text{MS}}}(x, \mu) + f_1^{\overline{q}/N, \overline{\text{MS}}}(x, \mu) \right)$$

2/16/2023

Weizsäcker Williams Channel Soft Fragmentation Part

$$\int \frac{d\lambda}{2\pi} e^{-i\lambda/z} \sum_{Y} \langle 0|\psi_{l}(0)|\gamma(p_{\gamma}), Y\rangle \langle \gamma(p_{\gamma}), Y|\overline{\psi}_{i}(\lambda n)|0\rangle \equiv \frac{z^{2\varepsilon}}{z} \not p_{\gamma,li} D_{1,bare}^{\gamma/\ell}(z)$$

$$\Rightarrow \text{This is a pure QED expression! Pole and finite part are computable using perturbation theory!}$$

$$(\gamma(p_{\gamma}), \ell(q)|\overline{\psi}_{i}(0)|0\rangle = \underbrace{p_{\gamma} + q}_{q} \underbrace{p_{\gamma}}_{q} = \left(\overline{u}(q)\left(-ie\xi^{*}(p_{\gamma})\right)i\frac{\not p_{\gamma} + \not q + m_{\ell}}{(p_{\gamma} + q)^{2} - m_{\ell}^{2}}\right)_{i}$$

$$D_{1,bare}^{\gamma/\ell}(z) = \frac{\alpha_{em}}{2\pi}P_{\gamma\ell}(z)\frac{S_{\varepsilon}}{\varepsilon} + \underbrace{\frac{\alpha_{em}}{2\pi}P_{\gamma\ell}(z)\left(\log\frac{\mu^{2}}{z^{2}m_{\ell}^{2}} - 1\right)}_{D_{1}^{\gamma/\ell,\text{MS}}(z)} + \mathcal{O}(\varepsilon)$$

 p_{γ}

Some Remarks on the polarized and non-zero lepton mass cases

Use HVBM scheme for handling γ_5 and $\epsilon^{\mu\nu\rho\sigma}$ \rightarrow also affects the relation between photon and quark distribution

$$g_{1,bare}^{\gamma/N}(x,\mu) = \frac{\alpha_{em}}{2\pi} \frac{S_{\varepsilon}}{\varepsilon} \int_{x}^{1} \frac{\mathrm{d}w}{w} \Delta P_{\gamma q}(w) g_{1}^{BH,\overline{\mathrm{MS}}}\left(\frac{x}{w},\mu\right) + g_{1}^{\gamma/N,\overline{\mathrm{MS}}}(x,\mu) \qquad \Delta P_{\gamma q}(w) \equiv 2 - w$$

Repeating the calculation with $l^2 = l'^2 = m_\ell^2 \neq 0$ and expanding around $m_\ell = 0$ gives a good consistency check

Massless direct + WW channels Assive direct channel

2/16/2023

Direct Channel via Crossing

CWW Channel Soft Emission Part

γFF Channel Soft Fragmentation Part

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\bigg{)} \end{array} \\
\bigg{)} \\
\bigg{)} \\
\bigg{)} \\
\bigg{)} \\
\bigg{)} \end{array} \\
\bigg{)} \\
\bigg{$$

Photon Isolation

Inside the cone $\longleftrightarrow \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \leq R$

Event is vetoed if $E_h > \xi E_\gamma$

- Subtract corresponding parts from the inclusive (full) cross section
- Can be done analytically for $R \ll 1$ (Small Cone Approximation)
- The direct Compton channel and the γFF channel get reduced, all other channels remain unaffected

Interference

Four different denominators containing momenta l', r which the phase space integral runs over →Partial fraction decomposition to simplify the phase space integration [2102.08943] New ideas for handling of loop and angular integrals in D-dimensions in QCD (arxiv.org)

Plots EIC

Unpolarized Vs. Pseudorapidity

Plots EIC

Model and A_{LL} Vs. **Pseudorapidity**

Assumption: $g_1^{\gamma/N} = \alpha_{em} g_1^{g/N}$

Plots JLab

Unpolarized Vs. Longitudinal Momentum

Summary

- (Almost) pure QED calculation featuring lesser known photonic soft functions $f_1^{\gamma/N} g_1^{\gamma/N} D_1^{\gamma/q}$
- Numeric predictions also show good accessibility in experiments and various favorable kinematic regions can be identified
- Next: Analysis of transverse spin effects / computation of the transverse spin asymmetry

$$A_N = \frac{d\sigma^{\top} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$