NLO Drell-Yan at low q_{T}

Fabian Wunder, University of Tübingen

FG2926-Workshop, Regensburg

February 16th, 2023

Outline

- 2 Perturbative NLO calculation
- Systematic small q_T-expansion
- 4 Results for gluon-fusion process
- 5 Summary and Outlook

Outline

- Perturbative NLO calculation
- Systematic small q_T-expansion
- 4 Results for gluon-fusion process
- 5 Summary and Outlook

- Perturbative NLO calculation
- 3 Systematic small q_{T} -expansion
- 4 Results for gluon-fusion process
- 5 Summary and Outlook

- Perturbative NLO calculation
- 3 Systematic small q_{T} -expansion
- 4 Results for gluon-fusion process
- 5 Summary and Outlook

- Perturbative NLO calculation
- 3 Systematic small q_{T} -expansion
- 4 Results for gluon-fusion process
- 5 Summary and Outlook

Drell-Yan process

Differential DY cross section

$$\frac{\mathrm{d}\sigma_{pp\to\ell\bar\ell X}}{\mathrm{d}^4q\,\mathrm{d}\Omega} = \frac{\alpha^2}{2(2\pi)^4 s^2 Q^4} \, \mathcal{L}_{\mu\nu} \mathcal{W}^{\mu\nu}$$

Fabian Wunder, University of Tübingen

(a)

æ

Reference frames

kinematic variables

$$s = (P_1 + P_2)^2, \ q^2 = Q^2, \ q = x_1 P^+ + x_2 P^- + q_T, \ \rho^2 = Q_T^2 / Q^2.$$

Figure: Collin-Soper frame (I.) and Gottfried-Jackson frame (r.) [Boer & Vogelsang, 2006]

Angular distributions

Helicity structure functions for $pp \rightarrow \gamma^* \rightarrow \ell \bar{\ell}$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}^4 q \,\mathrm{d}\Omega} = \frac{\alpha^2}{2(2\pi)^4 s^2 Q^4} \left[W_{\mathsf{T}}(1 + \cos^2 \theta) + W_{\mathsf{L}}(1 - \cos^2 \theta) + W_{\Delta} \sin^2 \theta \cos 2\phi \right]$$

Basis of covariant projectors

$$\begin{split} W_{g} &\equiv g_{\mu\nu} W^{\mu\nu} \,, \\ W_{1} &\equiv P_{1,\mu} P_{1,\nu} W^{\mu\nu} \,, \\ W_{2} &\equiv P_{2,\mu} P_{2,\nu} W^{\mu\nu} \,, \\ W_{12} &\equiv \left(P_{1,\mu} P_{2,\nu} + P_{2,\mu} P_{1,\nu} \right) W^{\mu\nu} \,. \end{split}$$

Angular distributions

Helicity structure functions for $pp \rightarrow \gamma^* \rightarrow \ell \bar{\ell}$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}^4 q \,\mathrm{d}\Omega} = \frac{\alpha^2}{2(2\pi)^4 s^2 Q^4} \left[W_{\mathsf{T}} (1 + \cos^2 \theta) + W_{\mathsf{L}} (1 - \cos^2 \theta) + W_{\Delta} \sin^2 \theta \cos 2\phi \right]$$
$$+ W_{\Delta} \sin 2\theta \cos \phi + W_{\Delta\Delta} \sin^2 \theta \cos 2\phi \right]$$

Basis of covariant projectors

$$\begin{split} & \mathcal{W}_{g} \equiv g_{\mu\nu} \mathcal{W}^{\mu\nu} \,, \\ & \mathcal{W}_{1} \equiv \mathcal{P}_{1,\mu} \mathcal{P}_{1,\nu} \mathcal{W}^{\mu\nu} \,, \\ & \mathcal{W}_{2} \equiv \mathcal{P}_{2,\mu} \mathcal{P}_{2,\nu} \mathcal{W}^{\mu\nu} \,, \\ & \mathcal{W}_{12} \equiv \left(\mathcal{P}_{1,\mu} \mathcal{P}_{2,\nu} + \mathcal{P}_{2,\mu} \mathcal{P}_{1,\nu} \right) \mathcal{W}^{\mu\nu} \,. \end{split}$$

▲ 同 ▶ → 三

Helicity structure functions in terms of covariant projectors

$$\begin{split} \mathcal{W}_{\mathsf{T}} &= -\frac{1}{2} \left[\mathcal{W}_{g} + \frac{1}{Q^{2} + Q_{\mathsf{T}}^{2}} \left(x_{1}^{2} \mathcal{W}_{1} + x_{2}^{2} \mathcal{W}_{2} - x_{1} x_{2} \mathcal{W}_{12} \right) \right] \\ \mathcal{W}_{\mathsf{L}} &= \frac{1}{Q^{2} + Q_{\mathsf{T}}^{2}} \left[x_{1}^{2} \mathcal{W}_{1} + x_{2}^{2} \mathcal{W}_{2} - x_{1} x_{2} \mathcal{W}_{12} \right] \\ \mathcal{W}_{\Delta} &= \frac{1}{\rho (Q^{2} + Q_{\mathsf{T}}^{2})} \left[x_{1}^{2} \mathcal{W}_{1} - x_{2}^{2} \mathcal{W}_{2} \right] \\ \mathcal{W}_{\Delta\Delta} &= -\frac{1}{2} \left\{ \mathcal{W}_{g} + \frac{1}{\rho^{2} (Q^{2} + Q_{\mathsf{T}}^{2})} \right. \\ & \left. \times \left[(2 + \rho^{2}) x_{1}^{2} \mathcal{W}_{1} + (2 + \rho^{2}) x_{2}^{2} \mathcal{W}_{2} + (2 - \rho^{2}) x_{1} x_{2} \mathcal{W}_{12} \right] \right\} \end{split}$$

Collinear factorization

Collinear factorization for DY differential cross section

$$\frac{\mathrm{d}\sigma_{pp\to\ell\bar{\ell}X}(P_1,P_2)}{\mathrm{d}^4q\,\mathrm{d}\Omega} = \sum_{a,b} \int_0^1 \mathrm{d}\xi_1 \int_0^1 \mathrm{d}\xi_2 \, f_{a/p}(\xi_1) f_{b/p}(\xi_2) \\ \times \frac{\mathrm{d}\hat{\sigma}_{ab\to\ell\bar{\ell}X}(\xi_1P_1,\xi_2P_2)}{\mathrm{d}^4q\,\mathrm{d}\Omega}$$

Collinear factorization for hadronic tensor; $z_i = x_i/\xi_i$

$$x_1 x_2 W_{pp}^{\mu\nu} = \sum_{a,b} \int_{x_1}^1 \mathrm{d} z_1 \int_{x_2}^1 \mathrm{d} z_2 f_{a/p}\left(\frac{x_1}{z_1}\right) f_{b/p}\left(\frac{x_2}{z_2}\right) \hat{W}_{ab}^{\mu\nu}(z_1, z_2)$$

Collinear factorization

Collinear factorization for DY differential cross section

$$\frac{\mathrm{d}\sigma_{pp\to\ell\bar{\ell}X}(P_1,P_2)}{\mathrm{d}^4q\,\mathrm{d}\Omega} = \sum_{a,b} \int_0^1 \mathrm{d}\xi_1 \int_0^1 \mathrm{d}\xi_2 \, f_{a/p}(\xi_1) f_{b/p}(\xi_2) \\ \times \frac{\mathrm{d}\hat{\sigma}_{ab\to\ell\bar{\ell}X}(\xi_1P_1,\xi_2P_2)}{\mathrm{d}^4q\,\mathrm{d}\Omega}$$

Collinear factorization for hadronic tensor; $z_i = x_i/\xi_i$

$$x_1 x_2 W^{\mu\nu}_{\rho\rho} = \sum_{a,b} \int_{x_1}^1 \mathrm{d} z_1 \int_{x_2}^1 \mathrm{d} z_2 f_{a/\rho} \left(\frac{x_1}{z_1}\right) f_{b/\rho} \left(\frac{x_2}{z_2}\right) \hat{W}^{\mu\nu}_{ab}(z_1, z_2)$$

Partonic helicity structure functions in CS-frame

$$\begin{split} \hat{W}_{T} &= -\frac{1}{2} \left[\hat{W}_{g} + \frac{1}{Q^{2} + Q_{T}^{2}} \left(z_{1}^{2} \hat{W}_{1} + z_{2}^{2} \hat{W}_{2} - z_{1} z_{2} \hat{W}_{12} \right) \right] \\ \hat{W}_{L} &= \frac{1}{Q^{2} + Q_{T}^{2}} \left[z_{1}^{2} \hat{W}_{1} + z_{2}^{2} \hat{W}_{2} - z_{1} z_{2} \hat{W}_{12} \right] \\ \hat{W}_{\Delta} &= \frac{1}{\rho (Q^{2} + Q_{T}^{2})} \left[z_{1}^{2} \hat{W}_{1} - z_{2}^{2} \hat{W}_{2} \right] \\ \hat{W}_{\Delta\Delta} &= -\frac{1}{2} \left\{ \hat{W}_{g} + \frac{1}{\rho^{2} (Q^{2} + Q_{T}^{2})} \right. \\ & \left. \times \left[(2 + \rho^{2}) z_{1}^{2} \hat{W}_{1} + (2 + \rho^{2}) z_{2}^{2} \hat{W}_{2} + (2 - \rho^{2}) z_{1} z_{2} \hat{W}_{12} \right] \right\} \end{split}$$

æ

LO QCD calculation [Boer & Vogelsang, 2006]

• contributions from annihilation process $q\bar{q} \to \gamma^* g$ and Compton-like process $qg \to \gamma^* q$

• simple tree-level results, functions of z_1 , z_2 and ρ^2

- phase-space proportional to $\int_{x_1}^1 dz_1 \int_{x_2}^1 dz_2 \, \delta\left(\frac{\hat{s}_2}{Q^2}\right)$, with $\hat{s}_2 = \hat{s} + \hat{t} + \hat{u} - Q^2$
- small Q_T-expansion achieved by expansion of delta function

$$\delta\left((1-z_1)(1-z_2) - \frac{z_1 z_2 \rho^2}{1+\rho^2}\right) = \frac{\delta(1-z_1)}{(1-z_1)_+} + \frac{\delta(1-z_2)}{(1-z_2)_+} -\delta(1-z_1)\delta(1-z_2)\log\rho^2 + \mathcal{O}(\rho^2)$$

LO QCD calculation [Boer & Vogelsang, 2006]

- contributions from annihilation process $q\bar{q} \to \gamma^* g$ and Compton-like process $qg \to \gamma^* q$
- simple tree-level results, functions of z_1 , z_2 and ρ^2
- phase-space proportional to $\int_{x_1}^1 dz_1 \int_{x_2}^1 dz_2 \, \delta\left(\frac{\hat{s}_2}{Q^2}\right)$, with $\hat{s}_2 = \hat{s} + \hat{t} + \hat{u} - Q^2$
- small Q_T-expansion achieved by expansion of delta function

$$\delta\left((1-z_1)(1-z_2) - \frac{z_1 z_2 \rho^2}{1+\rho^2}\right) = \frac{\delta(1-z_1)}{(1-z_1)_+} + \frac{\delta(1-z_2)}{(1-z_2)_+} -\delta(1-z_1)\delta(1-z_2)\log\rho^2 + \mathcal{O}(\rho^2)$$

LO QCD calculation [Boer & Vogelsang, 2006]

- contributions from annihilation process $q\bar{q} \to \gamma^* g$ and Compton-like process $qg \to \gamma^* q$
- simple tree-level results, functions of z_1 , z_2 and ρ^2
- phase-space proportional to $\int_{x_1}^1 dz_1 \int_{x_2}^1 dz_2 \, \delta\left(\frac{\hat{s}_2}{Q^2}\right)$, with $\hat{s}_2 = \hat{s} + \hat{t} + \hat{u} - Q^2$
- small Q_T-expansion achieved by expansion of delta function

$$\delta\left((1-z_1)(1-z_2) - \frac{z_1 z_2 \rho^2}{1+\rho^2}\right) = \frac{\delta(1-z_1)}{(1-z_1)_+} + \frac{\delta(1-z_2)}{(1-z_2)_+} -\delta(1-z_1)\delta(1-z_2)\log\rho^2 + \mathcal{O}(\rho^2)$$

LO QCD calculation [Boer & Vogelsang, 2006]

- contributions from annihilation process $q\bar{q} \to \gamma^* g$ and Compton-like process $qg \to \gamma^* q$
- simple tree-level results, functions of z_1 , z_2 and ρ^2
- phase-space proportional to $\int_{x_1}^1 dz_1 \int_{x_2}^1 dz_2 \, \delta\left(\frac{\hat{s}_2}{Q^2}\right)$, with $\hat{s}_2 = \hat{s} + \hat{t} + \hat{u} - Q^2$
- small Q_{T} -expansion achieved by expansion of delta function

$$\delta\left((1-z_1)(1-z_2) - \frac{z_1 z_2 \rho^2}{1+\rho^2}\right) = \frac{\delta(1-z_1)}{(1-z_1)_+} + \frac{\delta(1-z_2)}{(1-z_2)_+} -\delta(1-z_1)\delta(1-z_2)\log\rho^2 + \mathcal{O}(\rho^2)$$

LO QCD calculation [Boer & Vogelsang, 2006]

- contributions from annihilation process $q\bar{q} \to \gamma^* g$ and Compton-like process $qg \to \gamma^* q$
- simple tree-level results, functions of z_1 , z_2 and ρ^2
- phase-space proportional to $\int_{x_1}^1 dz_1 \int_{x_2}^1 dz_2 \,\delta\left(\frac{\hat{s}_2}{Q^2}\right)$, with $\hat{s}_2 = \hat{s} + \hat{t} + \hat{u} - Q^2$
- small Q_{T} -expansion achieved by expansion of delta function

$$\deltaigg((1-z_1)(1-z_2)-rac{z_1z_2
ho^2}{1+
ho^2}igg)=rac{\delta(1-z_1)}{(1-z_1)_+}+rac{\delta(1-z_2)}{(1-z_2)_+}\ -\delta(1-z_1)\delta(1-z_2)\log
ho^2+\mathcal{O}(
ho^2)$$

$$W_{\rm T} = \frac{\alpha_{\rm s}}{2\pi} \frac{1}{\rho^2} [C_{\rm F} (2 \ln \rho^2 + 3)q(x_1)\bar{q}(x_2) + q(x_1)(P_{qq} \otimes \bar{q})(x_2) + (P_{qq} \otimes q)(x_1)\bar{q}(x_2) + q(x_1)(P_{qg} \otimes g)(x_2) + (P_{qg} \otimes g)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] W_{\rm L} = \frac{\alpha_{\rm s}}{2\pi} [C_{\rm F} (2 \ln \rho^2 + 3)q(x_1)\bar{q}(x_2) + q(x_1)(P'_{qq} \otimes \bar{q})(x_2) + (P'_{qq} \otimes q)(x_1)\bar{q}(x_2) + q(x_1)(P'_{qg} \otimes g)(x_2) + (P'_{qg} \otimes g)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] W_{\Delta} = \frac{\alpha_{\rm s}}{2\pi} \frac{1}{\rho} [q(x_1)(\tilde{P}_{qq} \otimes \bar{q})(x_2) - (\tilde{P}_{qq} \otimes q)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] + q(x_1)(\tilde{P}_{qg} \otimes g)(x_2) - (\tilde{P}_{qg} \otimes g)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] W_{\Delta\Delta} = W_{\rm L}/2$$
 (Lam-Tung relation)

$$W_{\rm T} = \frac{\alpha_{\rm s}}{2\pi} \frac{1}{\rho^2} [C_{\rm F}(2\ln\rho^2 + 3)q(x_1)\bar{q}(x_2) + q(x_1)(P_{qq}\otimes\bar{q})(x_2) + (P_{qq}\otimes q)(x_1)\bar{q}(x_2) + q(x_1)(P_{qg}\otimes g)(x_2) + (P_{qg}\otimes g)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] \\ W_{\rm L} = \frac{\alpha_{\rm s}}{2\pi} [C_{\rm F}(2\ln\rho^2 + 3)q(x_1)\bar{q}(x_2) + (P'_{qg}\otimes q)(x_1)\bar{q}(x_2) + q(x_1)(P'_{qg}\otimes\bar{q})(x_2) + (P'_{qg}\otimes q)(x_1)\bar{q}(x_2) + q(x_1)(P'_{qg}\otimes g)(x_2) + (P'_{qg}\otimes g)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] \\ W_{\Delta} = \frac{\alpha_{\rm s}}{2\pi} \frac{1}{\rho} [q(x_1)(\tilde{P}_{qg}\otimes\bar{q})(x_2) - (\tilde{P}_{qg}\otimes g)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] \\ W_{\Delta\Delta} = W_{\rm L}/2 \quad (\text{Lam-Tung relation})$$

$$W_{\rm T} = \frac{\alpha_{\rm s}}{2\pi} \frac{1}{\rho^2} [C_{\rm F}(2\ln\rho^2 + 3)q(x_1)\bar{q}(x_2) + q(x_1)(P_{qq}\otimes\bar{q})(x_2) + (P_{qq}\otimes q)(x_1)\bar{q}(x_2) + q(x_1)(P_{qg}\otimes g)(x_2) + (P_{qg}\otimes g)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] \\ W_{\rm L} = \frac{\alpha_{\rm s}}{2\pi} [C_{\rm F}(2\ln\rho^2 + 3)q(x_1)\bar{q}(x_2) + (P'_{qg}\otimes q)(x_1)\bar{q}(x_2) + q(x_1)(P'_{qg}\otimes\bar{q})(x_2) + (P'_{qg}\otimes g)(x_1)\bar{q}(x_2) + q(x_1)(P'_{qg}\otimes g)(x_2) + (P'_{qg}\otimes g)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] \\ W_{\Delta} = \frac{\alpha_{\rm s}}{2\pi} \frac{1}{\rho} [q(x_1)(\tilde{P}_{qq}\otimes\bar{q})(x_2) - (\tilde{P}_{qg}\otimes g)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] \\ W_{\Delta\Delta} = W_{\rm L}/2 \quad (\text{Lam-Tung relation})$$

$$W_{\rm T} = \frac{\alpha_{\rm s}}{2\pi} \frac{1}{\rho^2} [C_{\rm F}(2\ln\rho^2 + 3)q(x_1)\bar{q}(x_2) + q(x_1)(P_{qq}\otimes\bar{q})(x_2) + (P_{qq}\otimes q)(x_1)\bar{q}(x_2) + q(x_1)(P_{qg}\otimes g)(x_2) + (P_{qg}\otimes g)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] \\ W_{\rm L} = \frac{\alpha_{\rm s}}{2\pi} [C_{\rm F}(2\ln\rho^2 + 3)q(x_1)\bar{q}(x_2) + (P'_{qq}\otimes q)(x_1)\bar{q}(x_2) + q(x_1)(P'_{qg}\otimes\bar{q})(x_2) + (P'_{qg}\otimes g)(x_1)\bar{q}(x_2) + q(x_1)(P'_{qg}\otimes g)(x_2) + (P'_{qg}\otimes g)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] \\ W_{\Delta} = \frac{\alpha_{\rm s}}{2\pi} \frac{1}{\rho} [q(x_1)(\tilde{P}_{qq}\otimes\bar{q})(x_2) - (\tilde{P}_{qq}\otimes q)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] + q(x_1)(\tilde{P}_{qg}\otimes g)(x_2) - (\tilde{P}_{qg}\otimes g)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] \\ W_{\Delta\Delta} = W_{\rm L}/2 \quad (\text{Lam-Tung relation})$$

$$W_{\rm T} = \frac{\alpha_{\rm s}}{2\pi} \frac{1}{\rho^2} [C_{\rm F}(2\ln\rho^2 + 3)q(x_1)\bar{q}(x_2) + q(x_1)(P_{qq}\otimes\bar{q})(x_2) + (P_{qq}\otimes q)(x_1)\bar{q}(x_2) + q(x_1)(P_{qg}\otimes g)(x_2) + (P_{qg}\otimes g)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] \\ W_{\rm L} = \frac{\alpha_{\rm s}}{2\pi} [C_{\rm F}(2\ln\rho^2 + 3)q(x_1)\bar{q}(x_2) + (P'_{qg}\otimes q)(x_1)\bar{q}(x_2) + q(x_1)(P'_{qg}\otimes\bar{q})(x_2) + (P'_{qg}\otimes q)(x_1)\bar{q}(x_2) + q(x_1)(P'_{qg}\otimes g)(x_2) + (P'_{qg}\otimes g)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] \\ W_{\Delta} = \frac{\alpha_{\rm s}}{2\pi} \frac{1}{\rho} [q(x_1)(\tilde{P}_{qg}\otimes\bar{q})(x_2) - (\tilde{P}_{qg}\otimes q)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] + q(x_1)(\tilde{P}_{qg}\otimes g)(x_2) - (\tilde{P}_{qg}\otimes g)(x_1)\bar{q}(x_2) + \mathcal{O}(\rho^2)] \\ W_{\Delta\Delta} = W_{\rm L}/2 \quad \text{(Lam-Tung relation)}$$

Effects of resummation on small- Q_T behvior

$$W_{\rm T} = \int \frac{{\rm d}^2 b}{4\pi} \, {\rm e}^{{\rm i} \vec{q}_{\rm T} \cdot \vec{b}} \sum_{a} e_a^2 q_a(x_1, b_0/b) \bar{q}_a(x_2, b_0/b) \, {\rm e}^{S(b, Q^2)}$$

with Sudakov form factor

$$S(b,Q) = -\int_{b_0^2/b^2}^{Q^2} \frac{\mathrm{d}k_{\mathsf{T}}^2}{k_{\mathsf{T}}^2} \left[A(\alpha_{\mathsf{s}}(k_{\mathsf{T}}) \ln\left(\frac{Q^2}{k_{\mathsf{T}}^2}\right) + B(\alpha_{\mathsf{s}}(k_{\mathsf{T}})) \right]$$

$$\sim rac{1}{
ho^2} \longrightarrow$$
 CSS-Resummation — γ

Figure from [Ebert et al., 2021]

Fabian Wunder, University of Tübingen

NLO Drell-Yan at low q_{T}

Effects of resummation on small- Q_T behvior

$$W_{\rm T} = \int \frac{{\rm d}^2 b}{4\pi} \, {\rm e}^{{\rm i} \vec{q}_{\rm T} \cdot \vec{b}} \sum_{a} e_a^2 q_a(x_1, b_0/b) \bar{q}_a(x_2, b_0/b) \, {\rm e}^{S(b, Q^2)}$$

with Sudakov form factor

$$S(b,Q) = -\int_{b_0^2/b^2}^{Q^2} \frac{\mathrm{d}k_{\mathsf{T}}^2}{k_{\mathsf{T}}^2} \left[A(\alpha_{\mathsf{s}}(k_{\mathsf{T}}) \ln\left(\frac{Q^2}{k_{\mathsf{T}}^2}\right) + B(\alpha_{\mathsf{s}}(k_{\mathsf{T}})) \right]$$

 $\sim rac{1}{
ho^2} \longrightarrow$ CSS-Resummation—

Figure from [Ebert et al., 2021]

Fabian Wunder, University of Tübingen

NLO Drell-Yan at low q_{T}

Effects of resummation on small- Q_T behvior

$$W_{\rm T} = \int \frac{{\rm d}^2 b}{4\pi} \, {\rm e}^{{\rm i} \vec{q}_{\rm T} \cdot \vec{b}} \sum_{a} e_a^2 q_a(x_1, b_0/b) \bar{q}_a(x_2, b_0/b) \, {\rm e}^{S(b, Q^2)}$$

with Sudakov form factor

$$S(b,Q) = -\int_{b_0^2/b^2}^{Q^2} \frac{\mathrm{d}k_{\mathsf{T}}^2}{k_{\mathsf{T}}^2} \left[A(\alpha_{\mathsf{s}}(k_{\mathsf{T}}) \ln\left(\frac{Q^2}{k_{\mathsf{T}}^2}\right) + B(\alpha_{\mathsf{s}}(k_{\mathsf{T}})) \right]$$

 $\sim rac{1}{
ho^2} \longrightarrow$ CSS-Resummation —

Figure from [Ebert et al., 2021]

Fabian Wunder, University of Tübingen

Effects of resummation on small- Q_T behvior

$$W_{\rm T} = \int \frac{{\rm d}^2 b}{4\pi} \, {\rm e}^{{\rm i} \vec{q}_{\rm T} \cdot \vec{b}} \sum_{a} e_a^2 q_a(x_1, b_0/b) \bar{q}_a(x_2, b_0/b) \, {\rm e}^{S(b, Q^2)}$$

with Sudakov form factor

$$S(b, Q) = -\int_{b_0^2/b^2}^{Q^2} \frac{\mathrm{d}k_{\mathrm{T}}^2}{k_{\mathrm{T}}^2} \left[A(\alpha_{\mathrm{s}}(k_{\mathrm{T}}) \ln\left(\frac{Q^2}{k_{\mathrm{T}}^2}\right) + B(\alpha_{\mathrm{s}}(k_{\mathrm{T}})) \right]$$

$$\sim \frac{1}{\rho^2} \longrightarrow \mathrm{CSS-Resummation} \longrightarrow \frac{1}{1^{\mathrm{Figure from [Ebert et al., 2021]}} \xrightarrow{0.08}{1^{\mathrm{Figure from [Ebert et al., 2021]}} \xrightarrow{0.09}{1^{\mathrm{Figure from [Ebert et al., 2021]}}} \xrightarrow{0.00}{1^{\mathrm{Figure from [Ebert et al., 2021]}} \xrightarrow{0.00}{1^{\mathrm{Figure from [Ebert et al., 2021]}}} \xrightarrow{0.00}{1^{\mathrm{Figure from Figure from [Ebert et al., 2021]}}} \xrightarrow{0.00}{1^{\mathrm{Figure from Figure from Figure from Figure for Figure from Figure from Figure from Figure for Figure from Figure from Figure from Figure for Figure for Figure from Figure for Figure$$

Perturbative NLO calculation

- NLO for Drell-Yan differential in Q_T calculated by Mirkes in 1992 [Mirkes, 1992]
- real corrections slightly wrong caused by erroneous recursion relation for one class of angular integrals
- independent recalculation using Mathematica and FeynCalc
- new general results for angular integrals, including double massive integral, all-order ε-expansions [Lyubovitskij et al., 2021]
- slight improvments on partial fraction decomposition and loop integrals compared to the literature [Lyubovitskij et al., 2021]
- $gg
 ightarrow \gamma^* q ar q$ subprocess as first example for Q_{T} expansion

- NLO for Drell-Yan differential in Q_T calculated by Mirkes in 1992 [Mirkes, 1992]
- real corrections slightly wrong caused by erroneous recursion relation for one class of angular integrals
- independent recalculation using Mathematica and FeynCalc
- new general results for angular integrals, including double massive integral, all-order ε-expansions [Lyubovitskij et al., 2021]
- slight improvments on partial fraction decomposition and loop integrals compared to the literature [Lyubovitskij et al., 2021]
- $gg
 ightarrow \gamma^* q ar q$ subprocess as first example for Q_{T} expansion

- NLO for Drell-Yan differential in Q_T calculated by Mirkes in 1992 [Mirkes, 1992]
- real corrections slightly wrong caused by erroneous recursion relation for one class of angular integrals
- independent recalculation using Mathematica and FeynCalc
- new general results for angular integrals, including double massive integral, all-order ε-expansions [Lyubovitskij et al., 2021]
- slight improvments on partial fraction decomposition and loop integrals compared to the literature [Lyubovitskij et al., 2021]
- $gg
 ightarrow \gamma^* q ar q$ subprocess as first example for Q_{T} expansion

- NLO for Drell-Yan differential in Q_T calculated by Mirkes in 1992 [Mirkes, 1992]
- real corrections slightly wrong caused by erroneous recursion relation for one class of angular integrals
- independent recalculation using Mathematica and FeynCalc
- new general results for angular integrals, including double massive integral, all-order ε-expansions [Lyubovitskij et al., 2021]
- slight improvments on partial fraction decomposition and loop integrals compared to the literature [Lyubovitskij et al., 2021]
- $gg
 ightarrow \gamma^* q ar q$ subprocess as first example for Q_{T} expansion

- NLO for Drell-Yan differential in Q_T calculated by Mirkes in 1992 [Mirkes, 1992]
- real corrections slightly wrong caused by erroneous recursion relation for one class of angular integrals
- independent recalculation using Mathematica and FeynCalc
- new general results for angular integrals, including double massive integral, all-order ε-expansions [Lyubovitskij et al., 2021]
- slight improvments on partial fraction decomposition and loop integrals compared to the literature [Lyubovitskij et al., 2021]

• $gg
ightarrow \gamma^* q ar q$ subprocess as first example for Q_{T} expansion

- NLO for Drell-Yan differential in Q_T calculated by Mirkes in 1992 [Mirkes, 1992]
- real corrections slightly wrong caused by erroneous recursion relation for one class of angular integrals
- independent recalculation using Mathematica and FeynCalc
- new general results for angular integrals, including double massive integral, all-order ε-expansions [Lyubovitskij et al., 2021]
- slight improvments on partial fraction decomposition and loop integrals compared to the literature [Lyubovitskij et al., 2021]
- $gg \rightarrow \gamma^* q\bar{q}$ subprocess as first example for Q_{T} expansion

æ

NLO calculation

Use
$$Q^2$$
, $z_1 = \frac{x_1}{\xi_1}$, $z_2 = \frac{x_2}{\xi_2}$, and $\rho^2 = \frac{Q_T^2}{Q^2}$ as independent variables. The Mandelstam variables can be expressed as

$$s = \frac{(1+\rho^2)Q^2}{z_1 z_2}, \quad t = -\frac{Q^2(1-z_1+\rho^2)}{z_1},$$
$$u = -\frac{Q^2(1-z_2+\rho^2)}{z_2}, \quad s_2 = \frac{Q^2((1-z_1)(1-z_2)+\rho^2(1-z_1-z_2))}{z_1 z_2}.$$

Example for Angular integral

$$\int \mathrm{d}\Omega_{k_1k_2} \frac{1}{(p_1 - k_1)^2 (p_2 - k_1)^2} = -\frac{4\pi z_1 z_2}{\varepsilon Q^4 \rho^2 (1 + \rho^2)} + \frac{4\pi z_1 z_2 \log\left(\frac{\rho^2 z_1 z_2}{(1 + \rho^2)(1 - z_1)(1 - z_2)}\right)}{Q^4 \rho^2 (1 + \rho^2)} + O\left(\varepsilon^1\right)$$

2

くさ くさ く

NLO calculation

Use Q^2 , $z_1 = \frac{x_1}{\xi_1}$, $z_2 = \frac{x_2}{\xi_2}$, and $\rho^2 = \frac{Q_T^2}{Q^2}$ as independent variables. The Mandelstam variables can be expressed as

$$\begin{split} s &= \frac{(1+\rho^2)Q^2}{z_1 z_2} \,, \quad t = -\frac{Q^2(1-z_1+\rho^2)}{z_1} \,, \\ u &= -\frac{Q^2(1-z_2+\rho^2)}{z_2} \,, \quad s_2 = \frac{Q^2((1-z_1)(1-z_2)+\rho^2(1-z_1-z_2))}{z_1 z_2} \,. \end{split}$$

Example for Angular integral

$$\int \mathrm{d}\Omega_{k_1k_2} \frac{1}{(p_1 - k_1)^2 (p_2 - k_1)^2} = -\frac{4\pi z_1 z_2}{\varepsilon Q^4 \rho^2 (1 + \rho^2)} + \frac{4\pi z_1 z_2 \log\left(\frac{\rho^2 z_1 z_2}{(1 + \rho^2)(1 - z_1)(1 - z_2)}\right)}{Q^4 \rho^2 (1 + \rho^2)} + O\left(\varepsilon^1\right)$$

NLO calculation

Use Q^2 , $z_1 = \frac{x_1}{\xi_1}$, $z_2 = \frac{x_2}{\xi_2}$, and $\rho^2 = \frac{Q_T^2}{Q^2}$ as independent variables. The Mandelstam variables can be expressed as

$$\begin{split} s &= \frac{(1+\rho^2)Q^2}{z_1 z_2}, \quad t = -\frac{Q^2(1-z_1+\rho^2)}{z_1}, \\ u &= -\frac{Q^2(1-z_2+\rho^2)}{z_2}, \quad s_2 = \frac{Q^2((1-z_1)(1-z_2)+\rho^2(1-z_1-z_2))}{z_1 z_2}. \end{split}$$

Example for Angular integral

$$\int \mathrm{d}\Omega_{k_1k_2} \frac{1}{(p_1 - k_1)^2 (p_2 - k_1)^2} \\ = -\frac{4\pi z_1 z_2}{\varepsilon Q^4 \rho^2 (1 + \rho^2)} + \frac{4\pi z_1 z_2 \log\left(\frac{\rho^2 z_1 z_2}{(1 + \rho^2)(1 - z_1)(1 - z_2)}\right)}{Q^4 \rho^2 (1 + \rho^2)} + O\left(\varepsilon^1\right)$$

Results – general structure

$$\begin{split} \hat{W}_{i} &= c_{1} + c_{2} \log \left(\frac{Q^{2}}{\mu_{F}^{2}} \right) + c_{3} \log \left(\frac{\rho^{2} z_{1} z_{2}}{(1+\rho)^{2} (1-z_{1})(1-z_{2})} \right) \\ &+ c_{4} \log \left(\frac{(1+\rho^{2})(1-z_{1})^{2} z_{1}}{z_{2}(1-z_{1}+\rho^{2})^{2}} \right) + c_{5} \log \left(\frac{(1+\rho^{2})(1-z_{2})^{2} z_{2}}{z_{1}(1-z_{2}+\rho^{2})^{2}} \right) \\ &+ c_{6} \log \left(1 - \frac{\rho^{2} z_{1} z_{2}}{(1+\rho^{2})(1-z_{1})(1-z_{2})} \right) \\ &+ c_{7} \log \left(\frac{(1+\rho^{2})(1-z_{1})^{2} z_{2}}{z_{1}(1-(1+\rho^{2})z_{1}+(1-z_{2})\rho^{2}} \right) \\ &+ c_{8} \log \left(1 + \frac{(1+\rho^{2})(1-z_{1}-z_{2})}{z_{1} z_{2}} \right) \\ &+ c_{9} \log \left(\frac{(1+\rho^{2})(1-z_{2})^{2} z_{1}}{z_{2}(1-z_{2}(1+\rho^{2})+\rho^{2}(1-z_{1}))^{2}} \right) \\ &+ c_{10} \log \left(\frac{1 + \sqrt{1 - \frac{4z_{1} z_{2}}{(1+\rho^{2})(z_{1}+z_{2})^{2}}}}{1 - \sqrt{1 - \frac{4z_{1} z_{2}}{(1+\rho^{2})(z_{1}+z_{2})^{2}}}} \right) \end{split}$$

Naive small $Q_{\rm T}$ limit; $W_{\rm T}$ and W_{Δ}

Just expand partonic helicity structure functions in ρ^2 and keep only the leading term.

$$\hat{W}_{T} \stackrel{?}{=} \frac{4\pi e_{q}^{2} \alpha_{s}^{2}}{C_{A} z_{1} z_{2}} \frac{1}{\rho^{2}} \left[(1 - 2z_{1} + 2z_{1}^{2})(1 - 2z_{2} + 2z_{2}^{2}) \log \left(\frac{Q_{T}^{2}}{\mu_{F}^{2}}\right) - (2z_{1} z_{2} - z_{1} - z_{2})(2z_{1} z_{2} - z_{1} - z_{2} + 1) \right] + \mathcal{O}(\rho^{0})$$

$$\hat{W}_{\Delta} \stackrel{?}{=} \frac{4\pi (z_{1} - z_{2}) e_{q}^{2} \alpha_{s}^{2}}{C_{A} z_{1} z_{2}} \frac{1}{\rho} \left[(-1 + 2(z_{1} + z_{2}) - 2z_{1} z_{2}) \log \left(\frac{Q_{T}^{2}}{\mu_{F}^{2}}\right) + 1 - z_{1} - z_{2} + 2z_{1} z_{2} \right] + \mathcal{O}(\rho)$$

Naive small $Q_{\rm T}$ limit; $W_{\rm T}$ and W_{Δ}

Just expand partonic helicity structure functions in ρ^2 and keep only the leading term.

$$\hat{W}_{\mathsf{T}} \stackrel{?}{=} \frac{4\pi e_{\mathsf{q}}^{2} \alpha_{s}^{2}}{C_{\mathsf{A}} z_{1} z_{2}} \frac{1}{\rho^{2}} \left[(1 - 2z_{1} + 2z_{1}^{2})(1 - 2z_{2} + 2z_{2}^{2}) \log\left(\frac{Q_{\mathsf{T}}^{2}}{\mu_{\mathsf{F}}^{2}}\right) - (2z_{1} z_{2} - z_{1} - z_{2})(2z_{1} z_{2} - z_{1} - z_{2} + 1) \right] + \mathcal{O}(\rho^{0})$$

$$\hat{W}_{\Delta} \stackrel{?}{=} \frac{4\pi (z_{1} - z_{2}) e_{\mathsf{q}}^{2} \alpha_{s}^{2}}{C_{\mathsf{A}} z_{1} z_{2}} \frac{1}{\rho} \left[(-1 + 2(z_{1} + z_{2}) - 2z_{1} z_{2}) \log\left(\frac{Q_{\mathsf{T}}^{2}}{\mu_{\mathsf{F}}^{2}}\right) + 1 - z_{1} - z_{2} + 2z_{1} z_{2} \right] + \mathcal{O}(\rho)$$

Naive small $Q_{\rm T}$ limit; $W_{\rm T}$ and W_{Δ}

Just expand partonic helicity structure functions in ρ^2 and keep only the leading term.

$$\begin{split} \hat{W}_{\mathsf{T}} \stackrel{?}{=} & \frac{4\pi e_{\mathsf{q}}^{2} \alpha_{s}^{2}}{C_{\mathsf{A}} z_{1} z_{2}} \frac{1}{\rho^{2}} \left[(1 - 2z_{1} + 2z_{1}^{2})(1 - 2z_{2} + 2z_{2}^{2}) \log\left(\frac{Q_{\mathsf{T}}^{2}}{\mu_{\mathsf{F}}^{2}}\right) \right. \\ & \left. - (2z_{1} z_{2} - z_{1} - z_{2})(2z_{1} z_{2} - z_{1} - z_{2} + 1) \right] + \mathcal{O}(\rho^{0}) \\ \hat{W}_{\Delta} \stackrel{?}{=} & \frac{4\pi \left(z_{1} - z_{2}\right) e_{\mathsf{q}}^{2} \alpha_{s}^{2}}{C_{\mathsf{A}} z_{1} z_{2}} \frac{1}{\rho} \left[(-1 + 2(z_{1} + z_{2}) - 2z_{1} z_{2}) \log\left(\frac{Q_{\mathsf{T}}^{2}}{\mu_{\mathsf{F}}^{2}}\right) \right. \\ & \left. + 1 - z_{1} - z_{2} + 2z_{1} z_{2} \right] + \mathcal{O}(\rho) \end{split}$$

Naive small Q_{T} limit; W_{L} and $W_{\Delta\Delta}$

$$\begin{split} \hat{W}_{L} \stackrel{?}{=} & \frac{4\pi e_{q}^{2} \alpha_{s}^{2}}{C_{A} z_{1} z_{2}} \left[(8z_{1}^{2} z_{2}^{2} - 4z_{1} z_{2} + 2) \log \left(\frac{Q^{2}}{\mu_{F}^{2}} \right) \\ & -(2z_{1}^{2} - 1)(2z_{2}^{2} - 1) \log \left(\frac{Q_{T}^{2}}{\mu_{F}^{2}} \right) + f(z_{1}, z_{2}) \right] \\ & + \frac{4\pi e_{q}^{2} \alpha_{s}^{2}}{C_{F}} g(z_{1}, z_{2}) + \mathcal{O}(\rho^{2}) \\ \hat{W}_{\Delta\Delta} \stackrel{?}{=} & - \frac{2\pi e_{q}^{2} \alpha_{s}^{2}}{C_{A} z_{1} z_{2}} \left[(-1 - 2z_{1}^{2} - 2z_{2}^{2} + 4z_{1} z_{2} - 4z_{1}^{2} z_{2}^{2}) \log \left(\frac{Q_{T}^{2}}{\mu_{F}^{2}} \right) \right. \\ & + 12z_{1}^{2} z_{2}^{2} + z_{1}^{2} + z_{2}^{2} - 8z_{1} z_{2} + z_{1} + z_{2} \right] \\ & + \frac{2\pi e_{q}^{2} \alpha_{s}^{2}}{C_{F}} + \mathcal{O}(\rho^{2}) \end{split}$$

Lam-Tung relation 2 $\hat{W}_{\Delta\Delta}=\hat{W}_{L}$ only holds for the log μ_{F}^2 part

伺 ト く ヨ ト く ヨ ト

Naive small Q_{T} limit; W_{L} and $W_{\Delta\Delta}$

$$\begin{split} \hat{W}_{L} \stackrel{?}{=} & \frac{4\pi e_{q}^{2} \alpha_{s}^{2}}{C_{A} z_{1} z_{2}} \left[(8z_{1}^{2} z_{2}^{2} - 4z_{1} z_{2} + 2) \log \left(\frac{Q^{2}}{\mu_{F}^{2}} \right) \\ &- (2z_{1}^{2} - 1)(2z_{2}^{2} - 1) \log \left(\frac{Q_{T}^{2}}{\mu_{F}^{2}} \right) + f(z_{1}, z_{2}) \right] \\ &+ \frac{4\pi e_{q}^{2} \alpha_{s}^{2}}{C_{F}} g(z_{1}, z_{2}) + \mathcal{O}(\rho^{2}) \\ \hat{W}_{\Delta\Delta} \stackrel{?}{=} &- \frac{2\pi e_{q}^{2} \alpha_{s}^{2}}{C_{A} z_{1} z_{2}} \left[\left(-1 - 2z_{1}^{2} - 2z_{2}^{2} + 4z_{1} z_{2} - 4z_{1}^{2} z_{2}^{2} \right) \log \left(\frac{Q_{T}^{2}}{\mu_{F}^{2}} \right) \\ &+ 12z_{1}^{2} z_{2}^{2} + z_{1}^{2} + z_{2}^{2} - 8z_{1} z_{2} + z_{1} + z_{2} \right] \\ &+ \frac{2\pi e_{q}^{2} \alpha_{s}^{2}}{C_{F}} + \mathcal{O}(\rho^{2}) \end{split}$$

am-Tung relation $2 \hat{W}{\Delta\Delta} = \hat{W}_L$ only holds for the log μ_{F}^2 part

(1) × × = × × =

Naive small Q_{T} limit; W_{L} and $W_{\Delta\Delta}$

$$\begin{split} \hat{W}_{L} \stackrel{?}{=} & \frac{4\pi e_{q}^{2} \alpha_{s}^{2}}{C_{A} z_{1} z_{2}} \left[(8z_{1}^{2} z_{2}^{2} - 4z_{1} z_{2} + 2) \log \left(\frac{Q^{2}}{\mu_{F}^{2}} \right) \\ &- (2z_{1}^{2} - 1)(2z_{2}^{2} - 1) \log \left(\frac{Q_{T}^{2}}{\mu_{F}^{2}} \right) + f(z_{1}, z_{2}) \right] \\ &+ \frac{4\pi e_{q}^{2} \alpha_{s}^{2}}{C_{F}} g(z_{1}, z_{2}) + \mathcal{O}(\rho^{2}) \\ \hat{W}_{\Delta\Delta} \stackrel{?}{=} &- \frac{2\pi e_{q}^{2} \alpha_{s}^{2}}{C_{A} z_{1} z_{2}} \left[\left(-1 - 2z_{1}^{2} - 2z_{2}^{2} + 4z_{1} z_{2} - 4z_{1}^{2} z_{2}^{2} \right) \log \left(\frac{Q_{T}^{2}}{\mu_{F}^{2}} \right) \\ &+ 12z_{1}^{2} z_{2}^{2} + z_{1}^{2} + z_{2}^{2} - 8z_{1} z_{2} + z_{1} + z_{2} \right] \\ &+ \frac{2\pi e_{q}^{2} \alpha_{s}^{2}}{C_{F}} + \mathcal{O}(\rho^{2}) \end{split}$$

Lam-Tung relation $2\hat{W}_{\Delta\Delta} = \hat{W}_L$ only holds for the log μ_F^2 part.

Geometry behind Lam-Tung relation

Lam-Tung relation

 $2W_{\Delta\Delta} = W_L$, holds if quark plane and hadron plane coincide [Peng et al., 2019]

Geometry behind Lam-Tung relation

Lam-Tung relation

 $2W_{\Delta\Delta} = W_L$, holds if quark plane and hadron plane coincide [Peng et al., 2019]

Figure: Contribution to Lam-Tung violation

Systematic small q_{T} -expansion

Setup

We have results of the form

$$x_1 x_2 W_i^{pp} = \sum_{a,b} \int_{x_1}^1 \mathrm{d} z_1 \int_{x_2}^1 \mathrm{d} z_2 f_{a/p}\left(\frac{x_1}{z_1}\right) f_{b/p}\left(\frac{x_2}{z_2}\right) \hat{W}_i^{ab}(z_1, z_2, \rho^2),$$

where

$$\hat{W}_i^{ab}(z_1, z_2, \rho^2) \sim \Theta\left(\frac{s_2}{Q^2}\right) \sum_i \underbrace{\mathcal{S}_i(z_1, z_2, \rho^2)}_{\text{singular for } \rho^2 \to 0} \underbrace{\mathcal{R}_i(z_1, z_2, \rho^2)}_{\text{regular for } \rho^2 \to 0}$$

and

$$\frac{s_2}{Q^2} = \frac{(1-z_1)(1-z_2) + \rho^2(1-z_1-z_2)}{z_1 z_2} \,.$$

Setup

We have results of the form

$$x_1 x_2 W_i^{pp} = \sum_{a,b} \int_{x_1}^1 \mathrm{d} z_1 \int_{x_2}^1 \mathrm{d} z_2 f_{a/p}\left(\frac{x_1}{z_1}\right) f_{b/p}\left(\frac{x_2}{z_2}\right) \hat{W}_i^{ab}(z_1, z_2, \rho^2),$$

where

$$\hat{W}_i^{ab}(z_1, z_2, \rho^2) \sim \Theta\left(\frac{s_2}{Q^2}\right) \sum_i \underbrace{\mathcal{S}_i(z_1, z_2, \rho^2)}_{\text{singular for } \rho^2 \to 0} \underbrace{\mathcal{R}_i(z_1, z_2, \rho^2)}_{\text{regular for } \rho^2 \to 0}$$

and

$$\frac{s_2}{Q^2} = \frac{(1-z_1)(1-z_2) + \rho^2(1-z_1-z_2)}{z_1 z_2}.$$

2

- Regular parts can be directly expanded in ρ² in the integrand; integration boundaries x₁, x₂ into regular term as θ functions
- Singular parts $S_i(z_1, z_2, \rho^2)$ e.g. $\frac{1}{1-z_1}$, $\frac{1}{1-z_2+\rho^2}$, $\frac{\log(1-z_1+\rho^2)}{1-z_2}$ and products thereof
- Number of different singular parts can be drastically reduced by partial fraction decomposition w.r.t. z₁ and z₂; total of 44 S_i(z₁, z₂, ρ²)

Problem:

Singular factors can not simply be expanded about ho^2

< ロ > < 同 > < 三 > < 三 >

- Regular parts can be directly expanded in ρ² in the integrand; integration boundaries x₁, x₂ into regular term as θ functions
- Singular parts $S_i(z_1, z_2, \rho^2)$ e.g. $\frac{1}{1-z_1}$, $\frac{1}{1-z_2+\rho^2}$, $\frac{\log(1-z_1+\rho^2)}{1-z_2}$ and products thereof
- Number of different singular parts can be drastically reduced by partial fraction decomposition w.r.t. z₁ and z₂; total of 44 S_i(z₁, z₂, ρ²)

Problem:

Singular factors can not simply be expanded about ho^2

イロト イヨト イヨト イヨト

- Regular parts can be directly expanded in ρ² in the integrand; integration boundaries x₁, x₂ into regular term as θ functions
- Singular parts $S_i(z_1, z_2, \rho^2)$ e.g. $\frac{1}{1-z_1}$, $\frac{1}{1-z_2+\rho^2}$, $\frac{\log(1-z_1+\rho^2)}{1-z_2}$ and products thereof
- Number of different singular parts can be drastically reduced by partial fraction decomposition w.r.t. z₁ and z₂; total of 44 S_i(z₁, z₂, ρ²)

Problem:

Singular factors can not simply be expanded about ho^2

- Regular parts can be directly expanded in ρ² in the integrand; integration boundaries x₁, x₂ into regular term as θ functions
- Singular parts $S_i(z_1, z_2, \rho^2)$ e.g. $\frac{1}{1-z_1}$, $\frac{1}{1-z_2+\rho^2}$, $\frac{\log(1-z_1+\rho^2)}{1-z_2}$ and products thereof
- Number of different singular parts can be drastically reduced by partial fraction decomposition w.r.t. z₁ and z₂; total of 44 S_i(z₁, z₂, ρ²)

Problem:

Singular factors can not simply be expanded about ρ^2 .

・ロン ・回 と ・ ヨン ・ ヨン

Example

$$\frac{1}{1-z_1+\rho^2} = \sum_{n=0}^{\infty} \frac{(-1)^n \rho^{2n}}{(1-z_1)^{n+1}}$$

When we take the limit of the integration area, each term gives a contribution from the area where $1 - z_1 \sim \rho^2$. This is of the order

for every term.

 \rightarrow can not just trunctate the series

Example

$$\frac{1}{1-z_1+\rho^2} = \sum_{n=0}^{\infty} \frac{(-1)^n \rho^{2n}}{(1-z_1)^{n+1}}$$

When we take the limit of the integration area, each term gives a contribution from the area where $1 - z_1 \sim \rho^2$. This is of the order

$$\rho^2 \times \frac{\rho^{2n}}{\rho^{2n+1}} = 1$$

for every term.

 \rightarrow can not just trunctate the series

Example

$$\frac{1}{1-z_1+\rho^2} = \sum_{n=0}^{\infty} \frac{(-1)^n \rho^{2n}}{(1-z_1)^{n+1}}$$

When we take the limit of the integration area, each term gives a contribution from the area where $1 - z_1 \sim \rho^2$. This is of the order

$$\rho^2 \times \frac{\rho^{2n}}{\rho^{2n+1}} = 1$$

for every term.

 \rightarrow can not just trunctate the series

ldea

Introduce subtractions to the regular part s.t. the contribution from the $s_2 > 0$ area is negligible. Then drop terms in the series.

$$\begin{split} \int_{0}^{1} \mathrm{d}z_{1} \int_{0}^{1} \mathrm{d}z_{2} \frac{\Theta(s_{2})\phi(z_{1}, z_{2})}{1 - z_{1} + \rho^{2}} &= \int_{0}^{1} \mathrm{d}z_{1} \int_{0}^{1} \mathrm{d}z_{2} \Theta(s_{2}) \frac{\phi(z_{1}, z_{2}) - \phi(1, z_{2})}{1 - z_{1} + \rho^{2}} \\ &+ \int_{0}^{1} \mathrm{d}z_{1} \phi(1, z_{2}) \underbrace{\int_{0}^{1} \mathrm{d}z_{2} \frac{\Theta(s_{2})}{1 - z_{1} + \rho^{2}}}_{\log(1 - z_{2} + \rho^{2}) - \log(\rho^{2})} \end{split}$$

Idea

Introduce subtractions to the regular part s.t. the contribution from the $s_2 > 0$ area is negligible. Then drop terms in the series.

$$\int_{0}^{1} \mathrm{d}z_{1} \int_{0}^{1} \mathrm{d}z_{2} \frac{\Theta(s_{2})\phi(z_{1}, z_{2})}{1 - z_{1} + \rho^{2}} = \int_{0}^{1} \mathrm{d}z_{1} \int_{0}^{1} \mathrm{d}z_{2} \Theta(s_{2}) \frac{\phi(z_{1}, z_{2}) - \phi(1, z_{2})}{1 - z_{1} + \rho^{2}} + \int_{0}^{1} \mathrm{d}z_{1} \phi(1, z_{2}) \underbrace{\int_{0}^{1} \mathrm{d}z_{2} \frac{\Theta(s_{2})}{1 - z_{1} + \rho^{2}}}_{\log(1 - z_{2} + \rho^{2}) - \log(\rho^{2})}$$

Idea

Introduce subtractions to the regular part s.t. the contribution from the $s_2 > 0$ area is negligible. Then drop terms in the series.

$$\int_{0}^{1} \mathrm{d}z_{1} \int_{0}^{1} \mathrm{d}z_{2} \frac{\Theta(s_{2})\phi(z_{1}, z_{2})}{1 - z_{1} + \rho^{2}} = \int_{0}^{1} \mathrm{d}z_{1} \int_{0}^{1} \mathrm{d}z_{2} \Theta(s_{2}) \frac{\phi(z_{1}, z_{2}) - \phi(1, z_{2})}{1 - z_{1} + \rho^{2}} \\ + \int_{0}^{1} \mathrm{d}z_{1} \phi(1, z_{2}) \underbrace{\int_{0}^{1} \mathrm{d}z_{2} \frac{\Theta(s_{2})}{1 - z_{1} + \rho^{2}}}_{\log(1 - z_{2} + \rho^{2}) - \log(\rho^{2})}$$

Idea

Introduce subtractions to the regular part s.t. the contribution from the $s_2 > 0$ area is negligible. Then drop terms in the series.

$$\begin{split} \int_{0}^{1} \mathrm{d}z_{1} \int_{0}^{1} \mathrm{d}z_{2} \frac{\Theta(s_{2})\phi(z_{1},z_{2})}{1-z_{1}+\rho^{2}} &= \int_{0}^{1} \mathrm{d}z_{1} \int_{0}^{1} \mathrm{d}z_{2} \Theta(s_{2}) \frac{\phi(z_{1},z_{2})-\phi(1,z_{2})}{1-z_{1}+\rho^{2}} \\ &+ \int_{0}^{1} \mathrm{d}z_{1} \phi(1,z_{2}) \underbrace{\int_{0}^{1} \mathrm{d}z_{2} \frac{\Theta(s_{2})}{1-z_{1}+\rho^{2}}}_{\log(1-z_{2}+\rho^{2})-\log(\rho^{2})} \end{split}$$

In the first integral the denominator is $\sim (1 - z_1)$, hence the overall integral is $\sim \rho^0$ in the $s_2 < 0$ region.

ightarrow we can put $ho^2 = 0$ and $\Theta(s_2)
ightarrow 1$; error of $\mathcal{O}(
ho^2)$

Idea

Introduce subtractions to the regular part s.t. the contribution from the $s_2 > 0$ area is negligible. Then drop terms in the series.

$$\begin{split} \int_{0}^{1} \mathrm{d}z_{1} \int_{0}^{1} \mathrm{d}z_{2} \frac{\Theta(s_{2})\phi(z_{1},z_{2})}{1-z_{1}+\rho^{2}} &= \int_{0}^{1} \mathrm{d}z_{1} \int_{0}^{1} \mathrm{d}z_{2} \Theta(s_{2}) \frac{\phi(z_{1},z_{2})-\phi(1,z_{2})}{1-z_{1}+\rho^{2}} \\ &+ \int_{0}^{1} \mathrm{d}z_{1} \phi(1,z_{2}) \underbrace{\int_{0}^{1} \mathrm{d}z_{2} \frac{\Theta(s_{2})}{1-z_{1}+\rho^{2}}}_{\log(1-z_{2}+\rho^{2})-\log(\rho^{2})} \end{split}$$

Result in terms of distributions

$$\frac{\theta(s_2)}{1-z_1+\rho^2} = \left[\frac{1}{1-z_1}\right]_+ + \delta(1-z_1)\left[\log(1-z_2) - \log(\rho^2)\right] + \mathcal{O}(\rho^2),$$

where
$$\int_0^1 dz \frac{f(z)}{[1-z]_+} \equiv \int_0^1 dz \frac{f(z) - f(1)}{1-z}$$
.

Question

```
Can we do better than \mathcal{O}(\rho^2) errors?
```

ldea

2

- 4 回 🕨 - 4 回 🕨 - -

Result in terms of distributions

$$\frac{\theta(s_2)}{1-z_1+\rho^2} = \left[\frac{1}{1-z_1}\right]_+ + \delta(1-z_1)\left[\log(1-z_2) - \log(\rho^2)\right] + \mathcal{O}(\rho^2),$$

where
$$\int_0^1 dz \frac{f(z)}{[1-z]_+} \equiv \int_0^1 dz \frac{f(z) - f(1)}{1-z}$$
.

Question

Can we do better than $\mathcal{O}(\rho^2)$ errors?

ldea

2

回 と く ヨ と く ヨ と

Result in terms of distributions

$$\frac{\theta(s_2)}{1-z_1+\rho^2} = \left[\frac{1}{1-z_1}\right]_+ + \delta(1-z_1)\left[\log(1-z_2) - \log(\rho^2)\right] + \mathcal{O}(\rho^2),$$

where
$$\int_0^1 dz \frac{f(z)}{[1-z]_+} \equiv \int_0^1 dz \frac{f(z) - f(1)}{1-z}$$
.

Question

Can we do better than $\mathcal{O}(\rho^2)$ errors?

Idea			
Google	Q taylor	x 🏮 💿 Q	
Q All 🛄 Ima	Taylor Swift American singer-songwriter		
About 1.020.000	 taylor series expansion taylor series formula 		

Fabian Wunder, University of Tübingen NLO Drell-Yan at low q_{T}

Taylor polynomial subtraction

Let $\phi(z_1, z_2)$ be a sufficiently regular function, $\mathcal{T}_{(1,z_2)}^n \phi(z_1, z_2), \mathcal{T}_{(z_1,1)}^m \phi(z_1, z_2)$, and $\mathcal{T}_{(1,1)}^{n,m} \phi(z_1, z_2)$ its one- and two-fold Taylor polynomials. Then

$$egin{aligned} &\phi(z_1,z_2) - \mathcal{T}^n_{(1,z_2)} \phi(z_1,z_2) - \mathcal{T}^m_{(z_1,1)} \phi(z_1,z_2) + \mathcal{T}^{n,m}_{(1,1)} \phi(z_1,z_2) \ &\sim (1-z_1)^{n+1} (1-z_2)^{m+1} \ &\sim
ho^{2(n+1)} +
ho^{2(m+1)} \end{aligned}$$

in the $s_2 < 0$ region.

Therefore...

Regularization to higher order makes singular part finite in $s_2 < 0$ region, which allows for expansion in ρ^2 . Error from $\Theta(s_2) \rightarrow 1$ suppressed by powers of ρ^2 .

Taylor polynomial subtraction

Let $\phi(z_1, z_2)$ be a sufficiently regular function, $\mathcal{T}_{(1,z_2)}^n \phi(z_1, z_2), \mathcal{T}_{(z_1,1)}^m \phi(z_1, z_2)$, and $\mathcal{T}_{(1,1)}^{n,m} \phi(z_1, z_2)$ its one- and two-fold Taylor polynomials. Then

$$egin{aligned} &\phi(z_1,z_2) - \mathcal{T}^n_{(1,z_2)}\phi(z_1,z_2) - \mathcal{T}^m_{(z_1,1)}\phi(z_1,z_2) + \mathcal{T}^{n,m}_{(1,1)}\phi(z_1,z_2) \ &\sim (1-z_1)^{n+1}(1-z_2)^{m+1} \ &\sim
ho^{2(n+1)} +
ho^{2(m+1)} \end{aligned}$$

in the $s_2 < 0$ region.

Therefore...

Regularization to higher order makes singular part finite in $s_2 < 0$ region, which allows for expansion in ρ^2 . Error from $\Theta(s_2) \rightarrow 1$ suppressed by powers of ρ^2 .

Overview of $Q_{\rm T}$ expansion algorithm

 $\int_0^1 \mathrm{d} z_1 \int_0^1 \mathrm{d} z_2 \sum_{i=1}^{n-1} c_i \mathcal{S}_i^{\mathsf{dist.}}(z_1, z_2) \phi(z_1, z_2)$

Systematic small **q**_T-expansion

Overview of Q_{T} expansion algorithm

Master formula for ρ^2 expansion

Calculate Mellin moments

Log-Laurent expansion

Reduce distributions

 $\int_0^1 \mathrm{d} z_1 \int_0^1 \mathrm{d} z_2 \sum_{i=1}^{n-1} c_i \mathcal{S}_i^{\mathsf{dist.}}(z_1, z_2) \phi(z_1, z_2)$

Systematic small qT-expansion

Overview of $Q_{\rm T}$ expansion algorithm

Master formula for ρ^2 expansion

Calculate Mellin moments

Systematic small qT-expansion

Overview of $Q_{\rm T}$ expansion algorithm

Master formula for ρ^2 expansion

Calculate Mellin moments

Log-Laurent expansion

 $\int_{0}^{1} \mathrm{d}z_{1} \int_{0}^{1} \mathrm{d}z_{2} \sum c_{i} \mathcal{S}_{i}^{\mathsf{dist.}}(z_{1}, z_{2}) \phi(z_{1}, z_{2})$

Systematic small qT-expansion

Overview of $Q_{\rm T}$ expansion algorithm

Master formula for ρ^2 expansion

Calculate Mellin moments

Log-Laurent expansion

Reduce distributions

 $\int_{0}^{1} \mathrm{d}z_{1} \int_{0}^{1} \mathrm{d}z_{2} \underbrace{\sum c_{i} \mathcal{S}_{i}^{\mathsf{dist.}}(z_{1}, z_{2})}_{\mathbf{A}} \phi(z_{1}, z_{2}) \phi(z_{1}, z_{2})$

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ● ○ ○ ○ ○

Systematic small q_T-expansion

Overview of $Q_{\rm T}$ expansion algorithm

Master formula for ρ^2 expansion

Calculate Mellin moments

Log-Laurent expansion

Notation I - brace yourselves, lots of formulas are coming

Degree of divergence

 n_1 , n_2 are the smallest integers s.t. $\lim_{z_1, z_2 \to 1} (1 - z_1)^{n_1} (1 - z_2)^{n_2} S_{n_1, n_2}(z_1, z_2)$ is finite.

Generalized Plus distributions

$$\begin{split} &\int_{0}^{1} \mathrm{d}z_{1} \int_{0}^{1} \mathrm{d}z_{2} \left[\frac{\log^{h}(1-z_{1})\log^{h}(1-z_{2})}{(1-z_{1})^{n_{1}}(1-z_{2})^{n_{2}}} \right]_{+,m_{1}}^{+,m_{2}} \phi(z_{1},z_{2}) \\ &= \int_{0}^{1} \mathrm{d}z_{1} \int_{0}^{1} \mathrm{d}z_{2} \frac{\log^{h}(1-z_{1})\log^{h}(1-z_{2})}{(1-z_{1})^{n_{1}}(1-z_{2})^{n_{2}}} \\ &\times \left[\phi(z_{1},z_{2}) - \mathcal{T}_{(1,z_{2})}^{m_{1}} \phi(z_{1},z_{2}) - \mathcal{T}_{(z_{1},1)}^{m_{2}} \phi(z_{1},z_{2}) + \mathcal{T}_{(1,1)}^{m_{1},m_{2}} \phi(z_{1},z_{2}) \right] \end{split}$$

Notation I - brace yourselves, lots of formulas are coming

Degree of divergence

 n_1 , n_2 are the smallest integers s.t. $\lim_{z_1, z_2 \to 1} (1 - z_1)^{n_1} (1 - z_2)^{n_2} S_{n_1, n_2}(z_1, z_2)$ is finite.

Generalized Plus distributions

$$\begin{split} &\int_{0}^{1} \mathrm{d}z_{1} \int_{0}^{1} \mathrm{d}z_{2} \left[\frac{\log^{l_{1}}(1-z_{1})\log^{l_{2}}(1-z_{2})}{(1-z_{1})^{n_{1}}(1-z_{2})^{n_{2}}} \right]_{+,m_{1}}^{+,m_{2}} \phi(z_{1},z_{2}) \\ &= \int_{0}^{1} \mathrm{d}z_{1} \int_{0}^{1} \mathrm{d}z_{2} \frac{\log^{l_{1}}(1-z_{1})\log^{l_{2}}(1-z_{2})}{(1-z_{1})^{n_{1}}(1-z_{2})^{n_{2}}} \\ &\times \left[\phi(z_{1},z_{2}) - \mathcal{T}_{(1,z_{2})}^{m_{1}} \phi(z_{1},z_{2}) - \mathcal{T}_{(z_{1},1)}^{m_{2}} \phi(z_{1},z_{2}) + \mathcal{T}_{(1,1)}^{m_{1},m_{2}} \phi(z_{1},z_{2}) \right] \end{split}$$

Notation II: Mellin moments

Single moments

$$\mathcal{M}(f)(k_1, z_2) = \int_0^1 \mathrm{d}z_1 (1 - z_1)^{k_1} f(z_1, z_2) \,,$$
$$\mathcal{M}(f)(z_1, k_2) = \int_0^1 \mathrm{d}z_2 (1 - z_2)^{k_2} f(z_1, z_2)$$

Double moments

$$\mathcal{M}(f)(k_1,k_2) = \int_0^1 \mathrm{d}z_1 \int_0^1 \mathrm{d}z_2 (1-z_1)^{k_1} (1-z_2)^{k_2} f(z_1,z_2)$$

æ

Notation II: Mellin moments

Single moments

$$\mathcal{M}(f)(k_1, z_2) = \int_0^1 \mathrm{d}z_1 (1 - z_1)^{k_1} f(z_1, z_2) \,,$$
$$\mathcal{M}(f)(z_1, k_2) = \int_0^1 \mathrm{d}z_2 (1 - z_2)^{k_2} f(z_1, z_2) \,.$$

Double moments

$$\mathcal{M}(f)(k_1,k_2) = \int_0^1 \mathrm{d}z_1 \int_0^1 \mathrm{d}z_2 (1-z_1)^{k_1} (1-z_2)^{k_2} f(z_1,z_2)$$

Theorem

$$\begin{split} \mathcal{S}_{n_{1},n_{2}}(z_{1},z_{2},\rho^{2}) &= \sum_{n=0}^{N} \rho^{2n} \left[\mathcal{S}_{n_{1}^{(n)},n_{2}^{(n)}}^{(n)}(z_{1},z_{2}) \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{1}=0}^{m_{1}} \frac{\delta^{(k_{1})}(1-z_{1})}{k_{1}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right) \left(k_{1},z_{2},\rho^{2}\right) \right]_{+,m_{2}}^{+,m_{2}} \\ &+ \sum_{k_{2}=0}^{m_{2}} \frac{\delta^{(k_{2})}(1-z_{2})}{k_{2}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right) \left(z_{1},k_{2},\rho^{2}\right) \right]_{+,m_{1}} \\ &+ \sum_{k_{1},k_{2}=0}^{m_{1},m_{2}} \frac{\delta^{(k_{1})}(1-z_{1})\delta^{(k_{2})}(1-z_{2})}{k_{1}!k_{2}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right) \left(k_{1},k_{2},\rho^{2}\right) \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \mathcal{O}(\rho^{2(N+1)}) \end{split}$$

(日) (日) (日)

Theorem

$$\begin{split} \mathcal{S}_{n_{1},n_{2}}(z_{1},z_{2},\rho^{2}) &= \sum_{n=0}^{N} \rho^{2n} \left[\mathcal{S}_{n_{1}^{(n)},n_{2}^{(n)}}^{(n)}(z_{1},z_{2}) \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{1}=0}^{m_{1}} \frac{\delta^{(k_{1})}(1-z_{1})}{k_{1}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right)\left(k_{1},z_{2},\rho^{2}\right) \right]_{+,m_{2}}^{+,m_{2}} \\ &+ \sum_{k_{2}=0}^{m_{2}} \frac{\delta^{(k_{2})}(1-z_{2})}{k_{2}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right)\left(z_{1},k_{2},\rho^{2}\right) \right]_{+,m_{1}} \\ &+ \sum_{k_{1},k_{2}=0}^{m_{1},m_{2}} \frac{\delta^{(k_{1})}(1-z_{1})\delta^{(k_{2})}(1-z_{2})}{k_{1}!k_{2}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right)\left(k_{1},k_{2},\rho^{2}\right) \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \mathcal{O}(\rho^{2(N+1)}) \end{split}$$

э

(日) (日) (日)

Theorem

$$\begin{split} \mathcal{S}_{n_{1},n_{2}}(z_{1},z_{2},\rho^{2}) &= \sum_{n=0}^{N} \rho^{2n} \left[\mathcal{S}_{n_{1}^{(n)},n_{2}^{(n)}}^{(n)}(z_{1},z_{2}) \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{1}=0}^{m_{1}} \frac{\delta^{(k_{1})}(1-z_{1})}{k_{1}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right)\left(k_{1},z_{2},\rho^{2}\right) \right]_{+,m_{2}}^{+,m_{2}} \\ &+ \sum_{k_{2}=0}^{m_{2}} \frac{\delta^{(k_{2})}(1-z_{2})}{k_{2}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right)\left(z_{1},k_{2},\rho^{2}\right) \right]_{+,m_{1}}^{+,m_{1}} \\ &+ \sum_{k_{1},k_{2}=0}^{m_{1},m_{2}} \frac{\delta^{(k_{1})}(1-z_{1})\delta^{(k_{2})}(1-z_{2})}{k_{1}!k_{2}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right)\left(k_{1},k_{2},\rho^{2}\right) \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \mathcal{O}(\rho^{2(N+1)}) \end{split}$$

э

通 と く ヨ と く ヨ と

Theorem

$$\begin{split} \mathcal{S}_{n_{1},n_{2}}(z_{1},z_{2},\rho^{2}) &= \sum_{n=0}^{N} \rho^{2n} \left[\mathcal{S}_{n_{1}^{(n)},n_{2}^{(n)}}^{(n)}(z_{1},z_{2}) \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{1}=0}^{m_{1}} \frac{\delta^{(k_{1})}(1-z_{1})}{k_{1}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right) \left(k_{1},z_{2},\rho^{2}\right) \right]_{+,m_{2}}^{+,m_{2}} \\ &+ \sum_{k_{2}=0}^{m_{2}} \frac{\delta^{(k_{2})}(1-z_{2})}{k_{2}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right) \left(z_{1},k_{2},\rho^{2}\right) \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{1},k_{2}=0}^{m_{1},m_{2}} \frac{\delta^{(k_{1})}(1-z_{1})\delta^{(k_{2})}(1-z_{2})}{k_{1}!k_{2}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right) \left(k_{1},k_{2},\rho^{2}\right) \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \mathcal{O}(\rho^{2(N+1)}) \end{split}$$

・日・ ・ヨ・ ・ヨ・

Theorem

$$\begin{split} \mathcal{S}_{n_{1},n_{2}}(z_{1},z_{2},\rho^{2}) &= \sum_{n=0}^{N} \rho^{2n} \left[\mathcal{S}_{n_{1}^{(n)},n_{2}^{(n)}}^{(n)}(z_{1},z_{2}) \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{1}=0}^{m_{1}} \frac{\delta^{(k_{1})}(1-z_{1})}{k_{1}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right)\left(k_{1},z_{2},\rho^{2}\right) \right]_{+,m_{2}}^{+,m_{2}} \\ &+ \sum_{k_{2}=0}^{m_{2}} \frac{\delta^{(k_{2})}(1-z_{2})}{k_{2}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right)\left(z_{1},k_{2},\rho^{2}\right) \right]_{+,m_{1}} \\ &+ \sum_{k_{1},k_{2}=0}^{m_{1},m_{2}} \frac{\delta^{(k_{1})}(1-z_{1})\delta^{(k_{2})}(1-z_{2})}{k_{1}!k_{2}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right)\left(k_{1},k_{2},\rho^{2}\right) \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \mathcal{O}(\rho^{2(N+1)}) \end{split}$$

・日・ ・ヨ・ ・ヨ・

Theorem

$$\begin{split} \mathcal{S}_{n_{1},n_{2}}(z_{1},z_{2},\rho^{2}) &= \sum_{n=0}^{N} \rho^{2n} \left[\mathcal{S}_{n_{1}^{(n)},n_{2}^{(n)}}^{(n)}(z_{1},z_{2}) \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{1}=0}^{m_{1}} \frac{\delta^{(k_{1})}(1-z_{1})}{k_{1}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right)\left(k_{1},z_{2},\rho^{2}\right) \right]_{+,m_{2}}^{+,m_{2}} \\ &+ \sum_{k_{2}=0}^{m_{2}} \frac{\delta^{(k_{2})}(1-z_{2})}{k_{2}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right)\left(z_{1},k_{2},\rho^{2}\right) \right]_{+,m_{1}} \\ &+ \sum_{k_{1},k_{2}=0}^{m_{1},m_{2}} \frac{\delta^{(k_{1})}(1-z_{1})\delta^{(k_{2})}(1-z_{2})}{k_{1}!k_{2}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right)\left(k_{1},k_{2},\rho^{2}\right) \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \mathcal{O}(\rho^{2(N+1)}) \end{split}$$

3. 3

Theorem

$$\begin{split} \mathcal{S}_{n_{1},n_{2}}(z_{1},z_{2},\rho^{2}) &= \sum_{n=0}^{N} \rho^{2n} \left[\mathcal{S}_{n_{1}^{(n)},n_{2}^{(n)}}^{(n)}(z_{1},z_{2}) \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{1}=0}^{m_{1}} \frac{\delta^{(k_{1})}(1-z_{1})}{k_{1}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right) \left(k_{1},z_{2},\rho^{2}\right) \right]_{+,m_{2}}^{+,m_{2}} \\ &+ \sum_{k_{2}=0}^{m_{2}} \frac{\delta^{(k_{2})}(1-z_{2})}{k_{2}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right) \left(z_{1},k_{2},\rho^{2}\right) \right]_{+,m_{1}} \\ &+ \sum_{k_{1},k_{2}=0}^{m_{1},m_{2}} \frac{\delta^{(k_{1})}(1-z_{1})\delta^{(k_{2})}(1-z_{2})}{k_{1}!k_{2}!} \left[\mathcal{M}\left(\mathcal{S}_{n_{1},n_{2}}\right) \left(k_{1},k_{2},\rho^{2}\right) \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \mathcal{O}(\rho^{2(N+1)}) \end{split}$$

・日・ ・ヨ・ ・ヨ・

$$\begin{split} \left[\mathcal{S}(\mathbf{z}_{1}, \mathbf{z}_{2}) \right]_{+,m_{1}}^{+,m_{2}} &= \sum_{k_{1}=1}^{m_{1}+1} \sum_{k_{2}=1}^{m_{2}+1} \sum_{l_{1}=0}^{l_{1}m_{2}} c_{l_{2}=0}^{(S)} c_{k_{1}k_{2}l_{1}l_{2}}^{(S)} \left[\frac{\log^{l_{1}}(1-z_{1})\log^{l_{2}}(1-z_{2})}{(1-z_{1})^{k_{1}}(1-z_{2})^{k_{2}}} \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{1}=1}^{m_{1}+1} \sum_{l_{1}=0}^{l_{1}m_{2}} \left[c_{k_{1}l_{1}}^{(S)}(z_{2}) \frac{\log^{l_{1}}(1-z_{1})}{(1-z_{1})^{k_{1}}} \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{2}=1}^{m_{2}+1} \sum_{l_{2}=0}^{l_{2}m_{2}} \left[c_{k_{2}l_{2}}^{(S)}(z_{1}) \frac{\log^{l_{2}}(1-z_{2})}{(1-z_{2})^{k_{2}}} \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \left[\mathcal{S}^{\text{finite}}(z_{1},z_{2}) \right]_{+,m_{1}}^{+,m_{2}} \end{split}$$
with coefficients $c_{k_{1}k_{2}l_{1}l_{2}}^{(S)}$ and finite functions $c_{k_{1}l_{1}}^{(S)}(z_{2}), c_{k_{2}l_{2}}^{(S)}(z_{1}),$

Fabian Wunder, University of Tübingen NLO Drell-Yan at low q_{T}

æ

通 ト イ ヨ ト イ ヨ ト

$$\begin{split} [\mathcal{S}(z_{1},z_{2})]_{+,m_{1}}^{+,m_{2}} &= \sum_{k_{1}=1}^{m_{1}+1} \sum_{k_{2}=1}^{m_{2}+1} \sum_{l_{1}=0}^{l_{1}m_{2}} \sum_{l_{2}=0}^{l_{2}m_{2}} c_{k_{1}k_{2}l_{1}l_{2}}^{(\mathcal{S})} \left[\frac{\log^{l_{1}}(1-z_{1})\log^{l_{2}}(1-z_{2})}{(1-z_{1})^{k_{1}}(1-z_{2})^{k_{2}}} \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{1}=1}^{m_{1}+1} \sum_{l_{1}=0}^{l_{1}m_{2}} \left[c_{k_{1}l_{1}}^{(\mathcal{S})}(z_{2}) \frac{\log^{l_{1}}(1-z_{1})}{(1-z_{1})^{k_{1}}} \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{2}=1}^{m_{2}+1} \sum_{l_{2}=0}^{l_{2}m_{2}} \left[c_{k_{2}l_{2}}^{(\mathcal{S})}(z_{1}) \frac{\log^{l_{2}}(1-z_{2})}{(1-z_{2})^{k_{2}}} \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \left[\mathcal{S}^{\text{finite}}(z_{1},z_{2}) \right]_{+,m_{1}}^{+,m_{2}} \end{split}$$
with coefficients $c_{k_{1}k_{2}l_{1}l_{2}}^{(\mathcal{S})}$ and finite functions $c_{k_{1}l_{1}}^{(\mathcal{S})}(z_{2}), c_{k_{2}l_{2}}^{(\mathcal{S})}(z_{1}),$
and $\mathcal{S}^{\text{finite}}(z_{1},z_{2}).$

Fabian Wunder, University of Tübingen NLO Drell-Yan at low q_{T}

æ

∃ → ∢

$$\begin{split} [\mathcal{S}(z_{1},z_{2})]_{+,m_{1}}^{+,m_{2}} &= \sum_{k_{1}=1}^{m_{1}+1} \sum_{k_{2}=1}^{m_{2}+1} \sum_{h=0}^{l_{1}^{max}} \sum_{b_{2}=0}^{l_{2}^{max}} c_{k_{1}k_{2}h_{2}b}^{(\mathcal{S})} \left[\frac{\log^{h}(1-z_{1})\log^{b}(1-z_{2})}{(1-z_{1})^{k_{1}}(1-z_{2})^{k_{2}}} \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{1}=1}^{m_{1}+1} \sum_{h=0}^{l_{1}^{max}} \left[c_{k_{1}h}^{(\mathcal{S})}(z_{2}) \frac{\log^{h}(1-z_{1})}{(1-z_{1})^{k_{1}}} \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{2}=1}^{m_{2}+1} \sum_{l_{2}=0}^{l_{2}^{max}} \left[c_{k_{2}l_{2}}^{(\mathcal{S})}(z_{1}) \frac{\log^{l_{2}}(1-z_{2})}{(1-z_{2})^{k_{2}}} \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \left[\mathcal{S}^{\text{finite}}(z_{1},z_{2}) \right]_{+,m_{1}}^{+,m_{2}} \end{split}$$
with coefficients $c_{k_{1}k_{2}h_{l_{2}}}^{(\mathcal{S})}$ and finite functions $c_{k_{1}h_{1}}^{(\mathcal{S})}(z_{2}), c_{k_{2}l_{2}}^{(\mathcal{S})}(z_{1}),$ and $\mathcal{S}^{\text{finite}}(z_{1},z_{2}).$

Fabian Wunder, University of Tübingen NLO Drell-Yan at low q_T

æ

🗇 🕨 🖉 🖻 🕨 🖉 🕨

$$\begin{split} [\mathcal{S}(z_{1},z_{2})]_{+,m_{1}}^{+,m_{2}} &= \sum_{k_{1}=1}^{m_{1}+1} \sum_{k_{2}=1}^{m_{2}+1} \sum_{h=0}^{l_{1}^{max}} \sum_{b_{2}=0}^{l_{2}^{max}} c_{k_{1}k_{2}h_{1}b}^{(\mathcal{S})} \left[\frac{\log^{h}(1-z_{1})\log^{b}(1-z_{2})}{(1-z_{1})^{k_{1}}(1-z_{2})^{k_{2}}} \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{1}=1}^{m_{1}+1} \sum_{l_{1}=0}^{l_{1}^{max}} \left[c_{k_{1}h}^{(\mathcal{S})}(z_{2}) \frac{\log^{h}(1-z_{1})}{(1-z_{1})^{k_{1}}} \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{2}=1}^{m_{2}+1} \sum_{l_{2}=0}^{l_{2}^{max}} \left[c_{k_{2}l_{2}}^{(\mathcal{S})}(z_{1}) \frac{\log^{b}(1-z_{2})}{(1-z_{2})^{k_{2}}} \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \left[\mathcal{S}^{\text{finite}}(z_{1},z_{2}) \right]_{+,m_{1}}^{+,m_{2}} \end{split}$$
with coefficients $c_{k_{1}k_{2}h_{1}h_{2}}^{(\mathcal{S})}$ and finite functions $c_{k_{1}h_{1}}^{(\mathcal{S})}(z_{2}), c_{k_{2}l_{2}}^{(\mathcal{S})}(z_{1}),$ and $\mathcal{S}^{\text{finite}}(z_{1},z_{2}).$

Fabian Wunder, University of Tübingen NLO Drell-Yan at low q_T

æ

@ ▶ ∢ ≣

▶ < ∃ >

$$\begin{split} [\mathcal{S}(z_{1},z_{2})]_{+,m_{1}}^{+,m_{2}} &= \sum_{k_{1}=1}^{m_{1}+1} \sum_{k_{2}=1}^{m_{2}+1} \sum_{l_{1}=0}^{l_{1}^{max}} \sum_{l_{2}=0}^{l_{2}^{max}} c_{k_{1}k_{2}h_{1}l_{2}}^{(\mathcal{S})} \left[\frac{\log^{l_{1}}(1-z_{1})\log^{l_{2}}(1-z_{2})}{(1-z_{1})^{k_{1}}(1-z_{2})^{k_{2}}} \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{1}=1}^{m_{1}+1} \sum_{l_{1}=0}^{l_{1}^{max}} \left[c_{k_{1}l_{1}}^{(\mathcal{S})}(z_{2}) \frac{\log^{l_{1}}(1-z_{1})}{(1-z_{1})^{k_{1}}} \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \sum_{k_{2}=1}^{m_{2}+1} \sum_{l_{2}=0}^{l_{2}^{max}} \left[c_{k_{2}l_{2}}^{(\mathcal{S})}(z_{1}) \frac{\log^{l_{2}}(1-z_{2})}{(1-z_{2})^{k_{2}}} \right]_{+,m_{1}}^{+,m_{2}} \\ &+ \left[\mathcal{S}^{\text{finite}}(z_{1},z_{2}) \right]_{+,m_{1}}^{+,m_{2}} \end{split}$$
with coefficients $c_{k_{1}k_{2}h_{1}l_{2}}^{(\mathcal{S})}$ and finite functions $c_{k_{1}l_{1}}^{(\mathcal{S})}(z_{2}), c_{k_{2}l_{2}}^{(\mathcal{S})}(z_{1}), and \mathcal{S}^{\text{finite}}(z_{1},z_{2}). \end{split}$

Fabian Wunder, University of Tübingen NLO Drell-Yan at low q_T

$$\begin{split} \left[\frac{\log^{h}(1-z_{1})\log^{h}(1-z_{2})}{(1-z_{1})^{n_{1}}(1-z_{2})^{n_{2}}} \right]_{+,m_{1}}^{+,m_{2}} &= \left[\frac{\log^{h}(1-z_{1})\log^{h}(1-z_{2})}{(1-z_{1})^{n_{1}}(1-z_{2})^{n_{2}}} \right]_{+,n_{1}-1}^{+,n_{2}-1} \\ &- \sum_{k_{1}=n_{1}}^{m_{1}} \frac{(-1)^{h}h_{1}!}{k_{1}!(k_{1}-n_{1}+1)} \delta^{(k_{1})}(1-z_{1}) \left[\frac{\log^{h}(1-z_{2})}{(1-z_{2})^{n_{2}}} \right]^{+,n_{2}-1} \\ &- \sum_{k_{2}=n_{2}}^{m_{2}} \frac{(-1)^{h}h_{2}!}{k_{2}!(k_{2}-n_{2}+1)} \delta^{(k_{2})}(1-z_{2}) \left[\frac{\log^{h}(1-z_{1})}{(1-z_{1})^{n_{1}}} \right]^{+,n_{1}-1} \\ &+ \sum_{k_{1}=n_{1}}^{m_{1}} \sum_{k_{2}=n_{2}}^{m_{2}} \frac{(-1)^{h+h_{2}}h_{1}!h_{2}!}{k_{1}!k_{2}!(k_{1}-n_{1}+1)(k_{2}-n_{2}+1)} \delta^{(k_{1})}(1-z_{1})\delta^{(k_{2})}(1-z_{2}) \end{split}$$

$$\begin{split} &\left[\frac{\log^{h}(1-z_{1})\log^{h}(1-z_{2})}{(1-z_{1})^{n_{1}}(1-z_{2})^{n_{2}}}\right]_{+,m_{1}}^{+,m_{2}} = \left[\frac{\log^{h}(1-z_{1})\log^{h}(1-z_{2})}{(1-z_{1})^{n_{1}}(1-z_{2})^{n_{2}}}\right]_{+,n_{1}-1}^{+,n_{2}-1} \\ &- \sum_{k_{1}=n_{1}}^{m_{1}} \frac{(-1)^{h}h_{1}!}{k_{1}!(k_{1}-n_{1}+1)} \delta^{(k_{1})}(1-z_{1}) \left[\frac{\log^{h}(1-z_{2})}{(1-z_{2})^{n_{2}}}\right]^{+,n_{2}-1} \\ &- \sum_{k_{2}=n_{2}}^{m_{2}} \frac{(-1)^{h}h_{2}!}{k_{2}!(k_{2}-n_{2}+1)} \delta^{(k_{2})}(1-z_{2}) \left[\frac{\log^{h}(1-z_{1})}{(1-z_{1})^{n_{1}}}\right]^{+,n_{1}-1} \\ &+ \sum_{k_{1}=n_{1}}^{m_{2}} \sum_{k_{2}=n_{2}}^{m_{2}} \frac{(-1)^{h+h}h_{1}!h_{2}!}{k_{1}!k_{2}!(k_{1}-n_{1}+1)(k_{2}-n_{2}+1)} \delta^{(k_{1})}(1-z_{1})\delta^{(k_{2})}(1-z_{2}) \end{split}$$

$$\begin{split} &\left[\frac{\log^{l_1}(1-z_1)\log^{l_2}(1-z_2)}{(1-z_1)^{n_1}(1-z_2)^{n_2}}\right]_{+,m_1}^{+,m_2} = \left[\frac{\log^{l_1}(1-z_1)\log^{l_2}(1-z_2)}{(1-z_1)^{n_1}(1-z_2)^{n_2}}\right]_{+,n_1-1}^{+,n_2-1} \\ &- \sum_{k_1=n_1}^{m_1}\frac{(-1)^{l_1}l_1!}{k_1!(k_1-n_1+1)}\delta^{(k_1)}(1-z_1)\left[\frac{\log^{l_2}(1-z_2)}{(1-z_2)^{n_2}}\right]^{+,n_2-1} \\ &- \sum_{k_2=n_2}^{m_2}\frac{(-1)^{l_2}l_2!}{k_2!(k_2-n_2+1)}\delta^{(k_2)}(1-z_2)\left[\frac{\log^{l_1}(1-z_1)}{(1-z_1)^{n_1}}\right]^{+,n_1-1} \\ &+ \sum_{k_1=n_1}^{m_1}\sum_{k_2=n_2}^{m_2}\frac{(-1)^{l_1+l_2}l_1!}{k_1!k_2!(k_1-n_1+1)(k_2-n_2+1)}\delta^{(k_1)}(1-z_1)\delta^{(k_2)}(1-z_2) \end{split}$$

$$\begin{split} &\left[\frac{\log^{l_1}(1-z_1)\log^{l_2}(1-z_2)}{(1-z_1)^{n_1}(1-z_2)^{n_2}}\right]_{+,m_1}^{+,m_2} = \left[\frac{\log^{l_1}(1-z_1)\log^{l_2}(1-z_2)}{(1-z_1)^{n_1}(1-z_2)^{n_2}}\right]_{+,n_1-1}^{+,n_2-1} \\ &- \sum_{k_1=n_1}^{m_1}\frac{(-1)^{l_1}l_1!}{k_1!(k_1-n_1+1)}\delta^{(k_1)}(1-z_1)\left[\frac{\log^{l_2}(1-z_2)}{(1-z_2)^{n_2}}\right]^{+,n_2-1} \\ &- \sum_{k_2=n_2}^{m_2}\frac{(-1)^{l_2}l_2!}{k_2!(k_2-n_2+1)}\delta^{(k_2)}(1-z_2)\left[\frac{\log^{l_1}(1-z_1)}{(1-z_1)^{n_1}}\right]^{+,n_1-1} \\ &+ \sum_{k_1=n_1}^{m_1}\sum_{k_2=n_2}^{m_2}\frac{(-1)^{l_1+l_2}l_1!}{k_1!k_2!(k_1-n_1+1)(k_2-n_2+1)}\delta^{(k_1)}(1-z_1)\delta^{(k_2)}(1-z_2) \end{split}$$

$$\begin{split} &\left[\frac{\log^{l_1}(1-z_1)\log^{l_2}(1-z_2)}{(1-z_1)^{n_1}(1-z_2)^{n_2}}\right]_{+,m_1}^{+,m_2} = \left[\frac{\log^{l_1}(1-z_1)\log^{l_2}(1-z_2)}{(1-z_1)^{n_1}(1-z_2)^{n_2}}\right]_{+,n_1-1}^{+,n_2-1} \\ &- \sum_{k_1=n_1}^{m_1}\frac{(-1)^{l_1}l_1!}{k_1!(k_1-n_1+1)}\delta^{(k_1)}(1-z_1)\left[\frac{\log^{l_2}(1-z_2)}{(1-z_2)^{n_2}}\right]^{+,n_2-1} \\ &- \sum_{k_2=n_2}^{m_2}\frac{(-1)^{l_2}l_2!}{k_2!(k_2-n_2+1)}\delta^{(k_2)}(1-z_2)\left[\frac{\log^{l_1}(1-z_1)}{(1-z_1)^{n_1}}\right]^{+,n_1-1} \\ &+ \sum_{k_1=n_1}^{m_1}\sum_{k_2=n_2}^{m_2}\frac{(-1)^{l_1+l_2}l_1!l_2!}{k_1!k_2!(k_1-n_1+1)(k_2-n_2+1)}\delta^{(k_1)}(1-z_1)\delta^{(k_2)}(1-z_2) \end{split}$$

$$\begin{split} &\left[\frac{f(z_2)\log^{l_1}(1-z_1)}{(1-z_1)^{n_1}}\right]_{+,m_1}^{+,m_2} = f(z_2)\left[\frac{\log^{l_1}(1-z_1)}{(1-z_1)^{n_1}}\right]_{+,n_1-1} \\ &- \sum_{k_1=n_1}^{m_1}\frac{(-1)^{l_1}l_1!}{k_1!(k_1-n_1+1)}\delta^{(k_1)}(1-z_1)f(z_2) \\ &- \sum_{k_2=0}^{n_2}\frac{\mathcal{M}(f)(k_2)}{k_2!}\delta^{(k_2)}(1-z_2)\left[\frac{\log^{l_1}(1-z_1)}{(1-z_1)^{m_1}}\right]_{+,m_1-1} \\ &+ \sum_{k_1=n_1}^{m_1}\sum_{k_2=0}^{m_2}\frac{(-1)^{l_1}l_1!\mathcal{M}(f)(k_2)}{k_1!k_2!(k_1-n_1+1)}\delta^{(k_1)}(1-z_1)\delta^{(k_2)}(1-z_2) \end{split}$$

$$\begin{split} [f(z_1,z_2)]^{+,m_2}_{+,m_1} = & f(z_1,z_2) - \sum_{k_1=0}^{m_1} \frac{\mathcal{M}(f)(k_1,z_2)}{k_1!} \delta^{(k_1)}(1-z_1) \\ & - \sum_{k_2=0}^{m_2} \frac{\mathcal{M}(f)(z_1,k_2)}{k_2!} \delta^{(k_2)}(1-z_2) \\ & + \sum_{k_1=0}^{m_1} \sum_{k_2=0}^{m_2} \frac{\mathcal{M}(f)(k_1,k_2)}{k_1!k_2!} \delta^{(k_1)}(1-z_1) \delta^{(k_2)}(1-z_2) \end{split}$$

Systematic small q_T-expansion

Overview of $Q_{\rm T}$ expansion algorithm

Master formula for ρ^2 expansion

Calculate Mellin moments

Log-Laurent expansion

Results for gluon-fusion process

NLP results

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Next-to-leading power contributions to Helicity structure functions

• result in terms of distributions

$$\delta^{(n_1)}(1-z_1)\delta^{(n_2)}(1-z_2)$$
 and $\left[rac{\log^{m_1}(1-z_1)\log^{m_2}(1-z_2)}{(1-z_1)^{n_1+1}(1-z_2)^{n_2+1}}
ight]_{+,n_1}^{+,n_2}$

- phase-space effects essential for NLP expansion
- LP non-trivial phase-space effects only in $W_{\Delta\Delta}$, not logarithmic
- Agreement with resummation prediction for W_{∆∆} for logarithmic term at LP (Feng Yuan)
- Lam-Tung relation for log $\mu_{\rm F}^2$, otherwise broken

Next-to-leading power contributions to Helicity structure functions

• result in terms of distributions

$$\delta^{(n_1)}(1-z_1)\delta^{(n_2)}(1-z_2)$$
 and $\left[rac{\log^{m_1}(1-z_1)\log^{m_2}(1-z_2)}{(1-z_1)^{n_1+1}(1-z_2)^{n_2+1}}
ight]_{+,n_1}^{+,n_2}$

- phase-space effects essential for NLP expansion
- LP non-trivial phase-space effects only in $W_{\Delta\Delta}$, not logarithmic
- Agreement with resummation prediction for $W_{\Delta\Delta}$ for logarithmic term at LP (Feng Yuan)
- Lam-Tung relation for log $\mu_{\rm F}^2$, otherwise broken

Next-to-leading power contributions to Helicity structure functions

• result in terms of distributions

$$\delta^{(n_1)}(1-z_1)\delta^{(n_2)}(1-z_2)$$
 and $\left[rac{\log^{m_1}(1-z_1)\log^{m_2}(1-z_2)}{(1-z_1)^{n_1+1}(1-z_2)^{n_2+1}}
ight]_{+,n_1}^{+,n_2}$

- phase-space effects essential for NLP expansion
- LP non-trivial phase-space effects only in $W_{\Delta\Delta}$, not logarithmic
- Agreement with resummation prediction for $W_{\Delta\Delta}$ for logarithmic term at LP (Feng Yuan)
- $\bullet\,$ Lam-Tung relation for $\log\mu_{\rm F}^2$, otherwise broken

$W_{\Delta\Delta}$ result

$$\begin{split} \hat{W}_{\Delta\Delta}^{\text{naive limit}} \stackrel{?}{=} &- \frac{2\pi e_{q}^{2} \alpha_{s}^{2}}{C_{A} z_{1} z_{2}} \left[\left(-1 - 2z_{1}^{2} - 2z_{2}^{2} + 4z_{1} z_{2} - 4z_{1}^{2} z_{2}^{2} \right) \log \left(\frac{Q_{T}^{2}}{\mu_{F}^{2}} \right) \right. \\ &+ 12 z_{1}^{2} z_{2}^{2} + z_{1}^{2} + z_{2}^{2} - 8z_{1} z_{2} + z_{1} + z_{2} \right] \\ &+ \frac{2\pi e_{q}^{2} \alpha_{s}^{2}}{C_{F}} + \mathcal{O}(\rho^{2}) \end{split}$$

Inlcuding phase space effects

$$\hat{W}_{\Delta\Delta} = -\frac{2\pi e_{q}^{2} \alpha_{s}^{2}}{C_{A} z_{1} z_{2}} \left[\left(-1 - 2z_{1}^{2} - 2z_{2}^{2} + 4z_{1} z_{2} - 4z_{1}^{2} z_{2}^{2} \right) \log \left(\frac{Q_{T}^{2}}{\mu_{F}^{2}} \right) \right. \\ \left. + 12z_{1} z_{2} (1 - z_{1}) (1 - z_{2}) - z_{1} (1 - z_{1}) - z_{2} (1 - z_{2}) \right] \\ \left. - \frac{2\pi e_{q}^{2} \alpha_{s}^{2}}{C_{F}} \left[2z_{1}^{2} + 2z_{2}^{2} + 3 \right] + \mathcal{O}(\rho^{2})$$

Fabian Wunder, University of Tübingen NLO Drell-Yan at low q_{T}

$W_{\Delta\Delta}$ result

$$\begin{split} \hat{W}_{\Delta\Delta}^{\text{naive limit}} \stackrel{?}{=} &- \frac{2\pi e_{q}^{2} \alpha_{s}^{2}}{C_{A} z_{1} z_{2}} \left[\left(-1 - 2z_{1}^{2} - 2z_{2}^{2} + 4z_{1} z_{2} - 4z_{1}^{2} z_{2}^{2} \right) \log \left(\frac{Q_{T}^{2}}{\mu_{F}^{2}} \right) \right. \\ &+ 12 z_{1}^{2} z_{2}^{2} + z_{1}^{2} + z_{2}^{2} - 8z_{1} z_{2} + z_{1} + z_{2} \right] \\ &+ \frac{2\pi e_{q}^{2} \alpha_{s}^{2}}{C_{F}} + \mathcal{O}(\rho^{2}) \end{split}$$

Inlcuding phase space effects

$$\begin{split} \hat{W}_{\Delta\Delta} &= -\frac{2\pi e_q^2 \alpha_s^2}{C_A z_1 z_2} \left[\left(-1 - 2z_1^2 - 2z_2^2 + 4z_1 z_2 - 4z_1^2 z_2^2 \right) \log \left(\frac{Q_T^2}{\mu_F^2} \right) \right. \\ &\left. + 12z_1 z_2 (1 - z_1)(1 - z_2) - z_1 (1 - z_1) - z_2 (1 - z_2) \right] \\ &\left. - \frac{2\pi e_q^2 \alpha_s^2}{C_F} \left[2z_1^2 + 2z_2^2 + 3 \right] + \mathcal{O}(\rho^2) \end{split}$$

NLO Drell-Yan at low q_{T}

Summary and Outlook

Summary and Outlook

Summary and Outlook

- We developed an algorithmic way to perform small- $Q_{\rm T}$ expansion of DY-Helicity structure functions
- We calculated the gluon fusion contribution to DY to
- Higher powers in the $Q_{\rm T}$ expansion, improve analytic
- complete DY calculation; expansion of $\left|\frac{1}{s_2}\right|$ in

- development of resummation formalism for W_1 , W_{Δ} , and
- Extension to polarized DY
- relation of collinear factorization and TMD physics
- application to related processes, e.g. SIDIS
- We developed an algorithmic way to perform small-Q_T expansion of DY-Helicity structure functions
- We calculated the gluon fusion contribution to DY to NLP in $Q_{\rm T}$
- Higher powers in the Q_T expansion, improve analytic calculation of Mellin moments
- complete DY calculation; expansion of $\left|\frac{1}{s_2}\right|$ in

qq-channel

- development of resummation formalism for W_L , W_Δ , and $W_{\Delta\Delta}$ (extension of [Berger et al., 2007])
- Extension to polarized DY
- relation of collinear factorization and TMD physics
- application to related processes, e.g. SIDIS

- We developed an algorithmic way to perform small-Q_T expansion of DY-Helicity structure functions
- We calculated the gluon fusion contribution to DY to NLP in $Q_{\rm T}$
- Higher powers in the Q_T expansion, improve analytic calculation of Mellin moments
- complete DY calculation; expansion of $\left|\frac{1}{s_2}\right|$ in

qq-channel

- development of resummation formalism for W_L , W_Δ , and $W_{\Delta\Delta}$ (extension of [Berger et al., 2007])
- Extension to polarized DY
- relation of collinear factorization and TMD physics
- application to related processes, e.g. SIDIS

- We developed an algorithmic way to perform small-Q_T expansion of DY-Helicity structure functions
- We calculated the gluon fusion contribution to DY to NLP in $Q_{\rm T}$
- Higher powers in the Q_T expansion, improve analytic calculation of Mellin moments
- complete DY calculation; expansion of $\left|\frac{1}{s_2}\right|$ in

qq̄-channel

- development of resummation formalism for W_L , W_Δ , and $W_{\Delta\Delta}$ (extension of [Berger et al., 2007])
- Extension to polarized DY
- relation of collinear factorization and TMD physics
- application to related processes, e.g. SIDIS

- We developed an algorithmic way to perform small-Q_T expansion of DY-Helicity structure functions
- We calculated the gluon fusion contribution to DY to NLP in $Q_{\rm T}$
- Higher powers in the Q_T expansion, improve analytic calculation of Mellin moments
- complete DY calculation; expansion of $\left|\frac{1}{s_2}\right|_{1}$ in

- development of resummation formalism for W_L , W_Δ , and $W_{\Delta\Delta}$ (extension of [Berger et al., 2007])
- Extension to polarized DY
- relation of collinear factorization and TMD physics
- application to related processes, e.g. SIDIS

- We developed an algorithmic way to perform small-Q_T expansion of DY-Helicity structure functions
- We calculated the gluon fusion contribution to DY to NLP in $Q_{\rm T}$
- Higher powers in the Q_T expansion, improve analytic calculation of Mellin moments
- complete DY calculation; expansion of $\left|\frac{1}{s_2}\right|_{1}$ in

- development of resummation formalism for W_L , W_Δ , and $W_{\Delta\Delta}$ (extension of [Berger et al., 2007])
- Extension to polarized DY
- relation of collinear factorization and TMD physics
- application to related processes, e.g. SIDIS

- We developed an algorithmic way to perform small-Q_T expansion of DY-Helicity structure functions
- We calculated the gluon fusion contribution to DY to NLP in $Q_{\rm T}$
- Higher powers in the Q_T expansion, improve analytic calculation of Mellin moments
- complete DY calculation; expansion of $\left|\frac{1}{s_2}\right|_{\perp}$ in

- development of resummation formalism for W_L , W_Δ , and $W_{\Delta\Delta}$ (extension of [Berger et al., 2007])
- Extension to polarized DY
- relation of collinear factorization and TMD physics
- application to related processes, e.g. SIDIS

- We developed an algorithmic way to perform small-Q_T expansion of DY-Helicity structure functions
- We calculated the gluon fusion contribution to DY to NLP in $Q_{\rm T}$
- Higher powers in the Q_T expansion, improve analytic calculation of Mellin moments
- complete DY calculation; expansion of $\left\lfloor \frac{1}{s_2} \right\rfloor_+$ in

- development of resummation formalism for W_L , W_Δ , and $W_{\Delta\Delta}$ (extension of [Berger et al., 2007])
- Extension to polarized DY
- relation of collinear factorization and TMD physics
- application to related processes, e.g. SIDIS

References I

- D. Boer and W. Vogelsang. *Drell-Yan lepton angular distribution at small transverse momentum.* Physical Review D 74.1 (2006): 014004.
- E. Mirkes, Angular decay distribution of leptons from W-bosons at NLO in hadronic collisions. Nuclear Physics B 387.1 (1992): 3-85.
- V. E. Lyubovitskij, F. Wunder, and A. S. Zhevlakov. *New ideas for handling of loop and angular integrals in D-dimensions in QCD.* Journal of High Energy Physics 2021.6 (2021): 1-128.
- J.-C. Peng et al. On the rotational invariance and non-invariance of lepton angular distributions in Drell-Yan and quarkonium production. Physics Letters B 789 (2019): 356-359.
- M. A. Ebert et al. *Drell-Yan qT resummation of fiducial power corrections at N3LL*. Journal of High Energy Physics 2021.4 (2021): 1-102.

References

References II

E. L. Berger, Edmond L., J. W. Qiu, and R. A. Rodriguez-Pedraza. Transverse momentum dependence of the angular distribution of the Drell-Yan process. Physical Review D 76.7 (2007): 074006.

44 / 43