Resummation of threshold logarithms in DVCS

Jakob Schönleber

University of Regensburg

Based on [2209.09015] J.S.

February 16, 2023

Deeply Virtual Compton Scattering

DVCS

$$
\gamma^{*}(q) N(p) \longrightarrow \gamma\left(q^{\prime}\right) N\left(p^{\prime}\right)
$$

Figure: Handbag approximation

Kinematical parameters

$$
\begin{gathered}
P=\frac{p+p^{\prime}}{2}, \quad t=\left(p^{\prime}-p\right)^{2}, \quad Q^{2}=-q^{2}, \quad M^{2}=p^{2}=p^{2}, \quad x_{B}=\frac{Q^{2}}{2 p \cdot q} \\
\xi=\frac{p^{+}-p^{\prime+}}{p^{+}+p^{\prime+}} \approx \frac{x_{B}}{2-x_{B}}
\end{gathered}
$$

a)

b)

- a) Leading region to DVCS amplitude, b) Factorized form after performing expansion. Dashed lines can be quarks or transversely polarized gluons.
- Vector contribution to the amplitude

$$
V(\xi, t)=\sum_{q} \int_{-1}^{1} \frac{d x}{\xi} C_{q}(x / \xi) F_{q}(x, \xi, t)+\int_{-1}^{1} \frac{d x}{\xi^{2}} C_{g}(x / \xi) F_{g}(x, \xi, t)
$$

where F_{q}, F_{g} are GPDs.

- A subtlety: Parton lines connecting H and A are assumed collinear to target. This order of size assumption fails (naively) at "breakpoints" $x= \pm \xi$, where one of the two lines becomes soft.
- Example: hard propagator in handbag diagram $\left(l^{+}=(x+\xi) P^{+}\right)$

$$
(l+q)^{2}+i 0=2(x-\xi)\left(l^{-}+q^{-}\right) P^{+}+l_{\perp}^{2}+O\left(-t, m^{2}\right)+i 0 .
$$

Canonical p.c.: $|x-\xi| \gg \max \left(|t|, m^{2},\left|l_{\perp}^{2}\right|\right) / Q^{2}$.
Collinear approximation: Set $l_{\perp}^{2}, t, m^{2}, l^{-}$to zero.

- Point $x=\xi$ is inside the integration region. But: Deformation of the integration contour is possible [Collins \& Freund, 98], restoring the validity of the collinear approximation.
- A caveat: GPD has discontinuous derivative at $x=\xi$. Contour deformation fails!
- But: Can write GPD for $x>0$ as

$$
F(x, \xi)=\Theta(x-\xi) \underbrace{F_{x>\xi}(x, \xi)}_{\text {analytic }}+\Theta(\xi-x) \underbrace{F_{x<\xi}(x, \xi)}_{\text {analytic }}
$$

and then

$$
\begin{aligned}
& \int_{0}^{1} d x C(x /(\xi-i 0)) F(x, \xi) \\
& =\underbrace{\int_{0}^{1} d x C(x /(\xi-i 0)) F_{x<\xi}(x, \xi)}_{\text {deform contour here }}+\int_{\xi}^{1} d x C(x / \xi) \underbrace{\left(F_{x>\xi}(x, \xi)-F_{\xi<x}(x, \xi)\right)}_{\text {gives additional suppression at } x=\xi}
\end{aligned}
$$

- Conclusion: $|x-\xi|$ does not get very small under the convolution integral.
- Leading terms of the quark CF for $x \rightarrow \xi$ [Braun, Manashov, Moch, Schoenleber, 20]

$$
C_{q}=\frac{1}{1-x / \xi}\left[1+\frac{\alpha_{s} C_{F}}{4 \pi} \log ^{2}\left(\frac{\xi-x}{2 \xi}\right)+\frac{1}{2}\left(\frac{\alpha_{s} C_{F}}{4 \pi} \log ^{2}\left(\frac{\xi-x}{2 \xi}\right)\right)^{2}+\ldots\right]
$$

- Question: Does this exponentiate to all orders? Is it possible to resum terms of the form $\frac{\alpha_{s}^{n}}{1 \pm x / \xi} \log ^{k}(x \pm \xi)$ to all orders? \rightarrow Yes.
- Although these logs are not large, one can
\rightarrow predict higher order terms in the CF
\rightarrow get contributions that might be relevant for precision physics
- We consider leading contributions to the CF near the partonic thresholds $\hat{s}=\frac{x-\xi}{2 \xi} Q^{2}=0$ (i.e. $x=\xi$) and $\hat{u}=-\frac{x+\xi}{2 \xi} Q^{2}=0$ (i.e. $x=-\xi$) \Rightarrow CF has poles with protruding branch cuts at $\hat{s}=0$ and $\hat{u}=0$.

- CF is (anti-)symmetric w.r.t. to $x \rightarrow-x$, so it is enough to only consider $x \rightarrow \xi$. Can focus on region $\hat{s} \rightarrow 0$.
- Key observation: quark CF itself factorizes near $x=\xi$. The outgoing parton leg becomes soft and the intermediate quark propagator (previously hard) becomes collinear to outgoing photon.

- Get factorization theorem

$$
C_{q}(x / \xi, \mu=Q)=\frac{h\left(Q^{2}, \nu^{2}\right) f\left(-\hat{s}, \nu^{2}\right)}{1-x / \xi}+O\left((x-\xi)^{0}\right)
$$

- Use independence on new factorization scale ν to resum logs.
- Resummed result:

$$
\begin{aligned}
& C_{q}(x / \xi, Q, \mu=Q) \\
& \sim \frac{\bar{h}\left(\alpha_{s}(Q)\right) \bar{f}\left(\alpha_{s}(\sqrt{-\hat{s}})\right)}{1-x / \xi} \exp \left\{\frac{1}{2} \int_{-\hat{s}}^{Q^{2}} \frac{d \mu^{2}}{\mu^{2}}\left[-\Gamma_{\text {cusp }}\left(\alpha_{s}(\mu)\right) \log \left(\frac{-\hat{s}}{\mu^{2}}\right)+\bar{\gamma}_{f}\left(\alpha_{s}(\mu)\right)\right]\right\} \\
& \stackrel{\mathrm{LL}}{\sim} \frac{1}{1-x / \xi} \exp \left\{\frac{8 \pi C_{F}}{\alpha_{s}(Q) \beta_{0}^{2}}(1-r+r \log r)\right\} \sim \frac{1}{1-x / \xi} \exp \left\{\frac{\alpha_{s}(Q)}{\pi} C_{F} \log ^{2}\left(\frac{\xi-x}{2 \xi}\right)\right\},
\end{aligned}
$$

where $r=1+\frac{\alpha_{s}(Q)}{4 \pi} \beta_{0} \log \left(\frac{\xi-x}{2 \xi}\right)$.

- All ingredients for NNLL can be obtained from the NNLO expression for C_{q}
- Need to integrate over running coupling $\alpha_{s}(\sqrt{-\hat{s}})$. But: recall that the convolution integral is defined on a deformed contour \Rightarrow The Landau pole is naturally avoided.
- Preliminary numerical study (simple model for quark GPD)

Gray: LO/NLL, Blue: NLO/NNLL, Brown: NNLO
Straight lines: Fixed order, Dashed lines: with resummation.

- Small corrections at small ξ. Sizable corrections at large $\xi \rightarrow 1$. This is because for $\xi \rightarrow 1$, the point $x=\xi$ approaches the endpoint of the contour.
- What about the gluon CF? Expect something like

- But: Decoupling of the collinear gluons from the hard subgraph H is not clear, since H has an external gluon. Modifications needed? Is this a known problem?
- The same resummation formula applies for the quark axial-vector case, i.e. also to the CF of the pion-photon transition form factor.
- Numerical analysis was performed for the most simple GPD model. Consider impact for more realistic models.
- For gluon CF a similar factorization theorem probably holds. Corrections small, since gluon contribution small at large ξ ?

