Accessing GPDs through meson production

Kornelija Passek-K.

Rudjer Bošković Institute, Croatia

(Escher 3D, Al Borge)

For2926, Regensburg, Feb 17, 2023

Intro 000	$\gamma^* N \to M N'$	$\begin{array}{l} \gamma N \to (\gamma M) N' \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Conclusions O
Outline			

ntro ●OO	$\gamma^* N \to M N'$	$\begin{array}{c} \gamma N \to (\gamma M) N' \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Conclusions O
Generalized	Parton Distribution	ns	
$\frac{x+\xi}{2}P^+$ $P_1 = \frac{1+\xi}{2}P^-$	$\begin{array}{c} x-\xi\\ \hline \\ \mathbf{GPD}\\ +\\ P_2=\frac{1-\xi}{2}P^+ \end{array}$	$P = P_1 + \Delta^2 = t$ $\xi = -\frac{\Delta^+}{P^+}$	P_2 $\Delta = P_2 - P_1$ momentum transfer longitudinal momentum transfer (skewness)
$F^a(x,\xi,t;$	$\mu) = \int \frac{dz^-}{2\pi} e^{ixP^+z^-} \langle P_z^- \rangle dz$	$_{2} \mathcal{O}^{a}(z) P_{1}\rangle\Big _{z^{+}=}$ $z\in\{q,g\},\mu\ldots$	$=0, \mathbf{z}_{\perp} = 0$ factorization scale
• vocto	$r(\mathbf{H}^{a}, \mathbf{F}^{a})$ and avoid vec	$tor CDDc (\widetilde{\underline{\mathbf{u}}}^{a})$	$\widetilde{\mathbf{F}}^{a}$

- vector (H^a , E^a) and axial-vector GPDs (H^a , E^a) \rightarrow chiral-even ($\mathcal{O}^q = \bar{q}(z)\Gamma q(-z), \Gamma = \gamma^+, \gamma^+\gamma_5$)
- transversity GPDs $(H_T^a, E_T^a, \widetilde{H}_T^a, \widetilde{E}_T^a)$ \rightarrow chiral-odd $(\Gamma = i\sigma^{+i})$

Intro 00●		$\gamma^* N \to N$	<i>M N'</i> 200000	$\begin{array}{c} \gamma N \rightarrow (\gamma M \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$)N' Cc	nclusion
	М		J^{PC}	DA	GPDs	
	S, V_L	$(q_i \bar{q_j})$	0^{++} , $1^{}$	ϕ_{asym},ϕ_{sym}	(H, E)	
	S	(gg)	0^{++}	ϕ_{sym}	(H_g, E_g)	
	PS, PV_L	$(q_i \bar{q_j})$	0^{-+} , 1^{+-}	ϕ_{sym},ϕ_{asym}	$(\widetilde{H},\widetilde{E})$	
	PS	(gg)	0^{-+}	ϕ_{asym}	$(\widetilde{H}_g,\widetilde{E}_g)$	
	V_T	$(q_i \bar{q_j})$	1	ϕ_{sym}	(H_T, E_T)]
	PV_T	$(q_i \bar{q_j})$	1^{+-}	ϕ_{asym}	$(\widetilde{H}_T, \widetilde{E}_T)$]
	Т	(gg)	2^{++}	ϕ_{asym}	(H_{Tg}, E_{Tg}, \ldots)	
		$(q_i \bar{q_j})$: H	$C = (-1)^{l+1}, C =$	$= (-1)^{l+s} (i=j)$, (gg) : $P = (-1)^l$, $C =$	1

•
$$\gamma^* \gamma \to PS(S,T) \Rightarrow \mathsf{DVCS}$$

•
$$\gamma_L^* M^{\pm} \to M^{\pm}$$
,
 $\gamma_L^* S(V_L) \to V_L(S)$, $\gamma_L^* PV_L(PS) \to PS(PV_L) \Rightarrow \mathsf{DVMP}$

•
$$\gamma \gamma \rightarrow M^{\pm} M^{\pm}$$
,
 $\gamma \gamma \rightarrow PS(S) PS(S), \gamma \gamma \rightarrow S PS$,
 $\gamma \gamma \rightarrow V(PV) V(PV), \gamma \gamma \rightarrow PV V$,
 $\gamma \gamma \rightarrow T PS, \gamma \gamma \rightarrow T S \Rightarrow \gamma p \rightarrow (\gamma M)N$

tro 0●		$\begin{array}{c} \gamma^* N \to N \\ \circ \circ$	<i>AN</i> ′ 000000	$\begin{array}{c} \gamma N \rightarrow (\gamma M \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	()N' Co	nclusion
	М		J^{PC}	DA	GPDs	
	S, V_L	$(q_i \bar{q_j})$	0^{++} , $1^{}$	ϕ_{asym}, ϕ_{sym}	(H, E)	
	S	(gg)	0^{++}	ϕ_{sym}	(H_g, E_g)	
	PS, PV_L	$(q_i \bar{q_j})$	0^{-+} , 1^{+-}	ϕ_{sym},ϕ_{asym}	$(\widetilde{H},\widetilde{E})$	
	PS	(gg)	0^{-+}	ϕ_{asym}	$(\widetilde{H}_g,\widetilde{E}_g)$	
	V_T	$(q_i \bar{q_j})$	1	ϕ_{sym}	(H_T, E_T)]
	PV_T	$(q_i \bar{q_j})$	1+-	ϕ_{asym}	$(\widetilde{H}_T, \widetilde{E}_T)$	
	Т	(gg)	2^{++}	ϕ_{asym}	(H_{Tg}, E_{Tg}, \ldots)	
		$(q_i \bar{q_j})$: H	$P = (-1)^{l+1}, C =$	$= (-1)^{l+s} (i=j)$, (gg) : $P = (-1)^l$, $C =$	1

 $\bullet \ \gamma^*\gamma \to \underline{PS}(\underline{S},T) \Rightarrow \mathsf{DVCS}$

•
$$\gamma_L^* M^{\pm} \to M^{\pm}$$
,
 $\gamma_L^* S(V_L) \to V_L(S)$, $\gamma_L^* PV_L(PS) \to PS(PV_L) \Rightarrow \mathsf{DVMP}$

•
$$\gamma \gamma \to M^{\pm} M^{\pm}$$
,
 $\gamma \gamma \to PS(S) PS(S), \gamma \gamma \to S PS$,
 $\gamma \gamma \to V(PV) V(PV), \gamma \gamma \to PV V$,
 $\gamma \gamma \to T PS, \gamma \gamma \to T S \Rightarrow \gamma p \to (\gamma M)N$

In O

tro 0●		$\begin{array}{c} \gamma^* N \to N \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	<i>M N'</i> 200000	$\begin{array}{c} \gamma N \rightarrow (\gamma M \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$)N'	Conclusion O
	М		J^{PC}	DA	GPDs	
	S, V_L	$(q_i \bar{q_j})$	0^{++} , $1^{}$	ϕ_{asym}, ϕ_{sym}	(H, E)	
	S	(gg)	0^{++}	ϕ_{sym}	(H_g, E_g)	
	PS, PV_L	$(q_i \bar{q_j})$	0^{-+} , 1^{+-}	ϕ_{sym},ϕ_{asym}	$(\widetilde{H},\widetilde{E})$	
	PS	(gg)	0^{-+}	ϕ_{asym}	$(\widetilde{H}_g,\widetilde{E}_g)$	
	V_T	$(q_i \bar{q_j})$	1	ϕ_{sym}	(H_T, E_T)	
	PV_T	$(q_i \bar{q_j})$	1^{+-}	ϕ_{asym}	$(\widetilde{H}_T, \widetilde{E}_T)$	
	Т	(gg)	2^{++}	ϕ_{asym}	(H_{Tg}, E_{Tg}, \ldots)	
		$(q_i \bar{q_j})$: I	$P = (-1)^{l+1}, C =$	$= (-1)^{l+s} (i=j)^{l+s}$, (gg) : $P = (-1)^l$, $C =$	= 1

• $\gamma^*\gamma \to \underline{PS}(\underline{S},\underline{T}) \Rightarrow \mathsf{DVCS}$

•
$$\gamma_L^* M^{\pm} \to M^{\pm}$$
,
 $\gamma_L^* S(V_L) \to V_L(S)$, $\gamma_L^* PV_L(PS) \to PS(PV_L) \Rightarrow \mathsf{DVMP}$

•
$$\gamma \gamma \to M^{\pm} M^{\pm}$$
,
 $\gamma \gamma \to PS(S) PS(S), \gamma \gamma \to S PS$,
 $\gamma \gamma \to V(PV) V(PV), \gamma \gamma \to PV V$,
 $\gamma \gamma \to T PS, \gamma \gamma \to T S \Rightarrow \gamma p \to (\gamma M)N$

In O

Intro 00●		$\begin{array}{c} \gamma^* N \to N \\ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	MN' 200000	$\begin{array}{c} \gamma N \rightarrow (\gamma M \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$) <i>N</i> ′ C	onclusion
	М		J^{PC}	DA	GPDs	
	S, V_L	$(q_i \bar{q_j})$	0^{++} , $1^{}$	ϕ_{asym},ϕ_{sym}	(H, E)	
	S	(gg)	0^{++}	ϕ_{sym}	(H_g, E_g)	
	PS, PV_L	$(q_i \bar{q_j})$	0^{-+} , 1^{+-}	ϕ_{sym}, ϕ_{asym}	$(\widetilde{H},\widetilde{E})$	
	PS	(gg)	0-+	ϕ_{asym}	$(\widetilde{H}_g,\widetilde{E}_g)$	
	V_T	$(q_i \bar{q_j})$	1	ϕ_{sym}	(H_T, E_T)	
	PV_T	$(q_i \bar{q_j})$	1+-	ϕ_{asym}	$(\widetilde{H}_T, \widetilde{E}_T)$	
	Т	(gg)	2^{++}	ϕ_{asym}	(H_{Tg}, E_{Tg}, \ldots)	
		$(q_i \bar{q_j})$: I	$C = (-1)^{l+1}, C =$	$= (-1)^{l+s} (i=j)$, (gg) : $P = (-1)^l$, $C =$	1

•
$$\gamma^* \gamma \to PS(S,T) \Rightarrow \mathsf{DVCS}$$

•
$$\gamma_L^* M^{\pm} \to M^{\pm}$$
,
 $\gamma_L^* \underline{S}(V_L) \to V_L(S), \ \gamma_L^* PV_L(PS) \to PS(PV_L) \Rightarrow \mathsf{DV}(\mathsf{V}_L)\mathsf{P}$

•
$$\gamma \gamma \rightarrow M^{\pm} M^{\pm}$$
,
 $\gamma \gamma \rightarrow PS(S) PS(S), \gamma \gamma \rightarrow S PS$,
 $\gamma \gamma \rightarrow V(PV) V(PV), \gamma \gamma \rightarrow PV V$,
 $\gamma \gamma \rightarrow T PS, \gamma \gamma \rightarrow T S \Rightarrow \gamma p \rightarrow (\gamma M)N$

Intro 00●		$\begin{array}{c} \gamma^* N \to N \\ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	<i>M N'</i> 200000	$\begin{array}{c} \gamma N \rightarrow (\gamma M \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$)N' Co	onclusion
	М		J^{PC}	DA	GPDs	
	S, V_L	$(q_i \bar{q_j})$	0^{++} , $1^{}$	ϕ_{asym},ϕ_{sym}	(H, E)	
	S	(gg)	0^{++}	ϕ_{sym}	(H_g, E_g)	
	PS, PV_L	$(q_i \bar{q_j})$	0^{-+} , 1^{+-}	ϕ_{sym},ϕ_{asym}	$(\widetilde{H},\widetilde{E})$	
	PS	(gg)	0^{-+}	ϕ_{asym}	$(\widetilde{H}_g,\widetilde{E}_g)$	
	V_T	$(q_i \bar{q_j})$	1	ϕ_{sym}	(H_T, E_T)]
	PV_T	$(q_i \bar{q_j})$	1^{+-}	ϕ_{asym}	$(\widetilde{H}_T, \widetilde{E}_T)$	
	Т	(gg)	2^{++}	ϕ_{asym}	(H_{Tg}, E_{Tg}, \ldots)	
		$(q_i \bar{q_j})$: I	$C = (-1)^{l+1}, C =$	$= (-1)^{l+s} (i=j)$, (gg) : $P = (-1)^l$, $C =$	1

•
$$\gamma^* \gamma \to PS(S,T) \Rightarrow \mathsf{DVCS}$$

•
$$\gamma_L^* M^{\pm} \to M^{\pm}$$
,
 $\gamma_L^* S(V_L) \to V_L(S), \ \gamma_L^* \underline{PV_L} \ (PS) \to \underline{PS} \ (PV_L) \Rightarrow \mathsf{DV}(\mathsf{PS})\mathsf{P}$

•
$$\gamma \gamma \rightarrow M^{\pm} M^{\pm}$$
,
 $\gamma \gamma \rightarrow PS(S) PS(S), \gamma \gamma \rightarrow S PS$,
 $\gamma \gamma \rightarrow V(PV) V(PV), \gamma \gamma \rightarrow PV V$,
 $\gamma \gamma \rightarrow T PS, \gamma \gamma \rightarrow T S \Rightarrow \gamma p \rightarrow (\gamma M)N$

Intro 00●		$\begin{array}{c} \gamma^* N \to N \\ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	<i>M N'</i> 200000	$\begin{array}{c} \gamma N \rightarrow (\gamma M \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$)N' Cc	nclusion
	М		J^{PC}	DA	GPDs	
	S, V_L	$(q_i \bar{q_j})$	0^{++} , $1^{}$	ϕ_{asym},ϕ_{sym}	(H, E)	
	S	(gg)	0^{++}	ϕ_{sym}	(H_g, E_g)	
	PS, PV_L	$(q_i \bar{q_j})$	0^{-+} , 1^{+-}	ϕ_{sym},ϕ_{asym}	$(\widetilde{H},\widetilde{E})$	
	PS	(gg)	0^{-+}	ϕ_{asym}	$(\widetilde{H}_g,\widetilde{E}_g)$	
	V_T	$(q_i \bar{q_j})$	1	ϕ_{sym}	(H_T, E_T)]
	PV_T	$(q_i \bar{q_j})$	1^{+-}	ϕ_{asym}	$(\widetilde{H}_T, \widetilde{E}_T)$	
	Т	(gg)	2^{++}	ϕ_{asym}	(H_{Tg}, E_{Tg}, \ldots)	
		$(q_i \bar{q_j})$: I	$P = (-1)^{l+1}, C =$	$= (-1)^{l+s} (i=j)$, (gg) : $P = (-1)^l$, $C =$	1

•
$$\gamma^* \gamma \to PS(S,T) \Rightarrow \mathsf{DVCS}$$

•
$$\gamma_L^* M^{\pm} \to M^{\pm}$$
,
 $\gamma_L^* S(V_L) \to V_L(S)$, $\gamma_L^* PV_L(PS) \to PS(PV_L) \Rightarrow \mathsf{DVMP}$

•
$$\gamma\gamma \to M^{\pm} M^{\pm}$$
,
 $\gamma\gamma \to PS(S) PS(S), \gamma\gamma \to S PS$,
 $\gamma\gamma \to \underline{V} (PV) V (PV), \gamma\gamma \to \underline{PV} V$,
 $\gamma\gamma \to T PS, \gamma\gamma \to T S \qquad \Rightarrow \gamma p \to (\gamma V)N$

Intro 00●		$\gamma^* N \to N$	MN' 200000	$\begin{array}{c} \gamma N \rightarrow (\gamma M \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$)N' Co	nclusion
	М		J^{PC}	DA	GPDs	
	S, V_L	$(q_i \bar{q_j})$	0^{++} , $1^{}$	ϕ_{asym},ϕ_{sym}	(H, E)	
	S	(gg)	0^{++}	ϕ_{sym}	(H_g, E_g)	
	PS, PV_L	$(q_i \bar{q_j})$	0^{-+} , 1^{+-}	ϕ_{sym},ϕ_{asym}	$(\widetilde{H},\widetilde{E})$	
	PS	(gg)	0-+	ϕ_{asym}	$(\widetilde{H}_g,\widetilde{E}_g)$	
	V_T	$(q_i \bar{q_j})$	1	ϕ_{sym}	(H_T, E_T)]
	PV_T	$(q_i \bar{q_j})$	1+-	ϕ_{asym}	$(\widetilde{H}_T, \widetilde{E}_T)$	
	Т	(gg)	2^{++}	ϕ_{asym}	(H_{Tg}, E_{Tg}, \ldots)	
		$(q_i \bar{q_j})$: I	$C = (-1)^{l+1}, C =$	$= (-1)^{l+s} (i=j)$, (gg) : $P = (-1)^l$, $C =$	1

•
$$\gamma^* \gamma \to PS(S,T) \Rightarrow \mathsf{DVCS}$$

•
$$\gamma_L^* M^{\pm} \to M^{\pm}$$
,
 $\gamma_L^* S(V_L) \to V_L(S)$, $\gamma_L^* PV_L(PS) \to PS(PV_L) \Rightarrow \mathsf{DVMP}$

•
$$\gamma \gamma \to M^{\pm} M^{\pm}$$
,
 $\gamma \gamma \to \underline{PS} (S) PS (S), \gamma \gamma \to \underline{S} PS$,
 $\gamma \gamma \to V(PV) V(PV), \gamma \gamma \to PV V$,
 $\gamma \gamma \to \underline{T} PS, \gamma \gamma \to T S \Rightarrow \gamma p \to (\gamma PS)N$

 \Rightarrow observables (cross sections, asymmetries)

$\gamma^* N \to M N'$	$\gamma N \to (\gamma M) N'$	Conclusions
00000000000	0000000	0

Meson Production status

- DV (V_L) P:
 - tw-2 predictions $(\underline{\gamma_L^*N
 ightarrow V_LN'})$ can describe the data
 - tw-3 calculations $\left(\gamma_T^*N o V_{L,T}N'
 ight)$ [Anikin, Teryaev '02], [Golosk., Kroll '13]
- DV (PS) P:
 - tw-2 predictions $(\gamma_L^*N \to \pi N')$ bellow the data [HERMES '09] [JLab '12,'16, '20] [COMPAS '19] \Rightarrow importance of $\gamma_T^*N \to \pi N'$
 - $\Rightarrow \text{ tw-3 calculations } (\gamma_T^* N \to \pi N') \text{ with transversity (chiral-odd)} \\ \text{GPDs } (H_T^q...) \text{ [Goloskokov, Kroll '10] (2-body, i.e., WW} \\ \text{approximation), [Ahmad, Goldstein Liuti '09, Goldstein, Hernandez, Liuti '13]}$
- WA (PS) P:
 - tw-2 results [Huang, Kroll '00] bellow the data [SLAC '76], [JLab '05, '18] for photoproduction $(Q^2 = 0)$
 - tw-3 2-body π photoproduction vanishes [Huang, Jakob, Kroll, P-K '03]
 - ⇒ tw-3 (2- and 3-body) prediction to π_0 photoproduction [Kroll, P-K '18] fitted to CLAS data [CLAS '18]; photoproduction of η, η' mesons [Kroll, P-K. '22] [preliminary GlueX '20]
 - ⇒ tw-3 prediction for π^{\pm}, π^{0} photo- and electroproduction $(Q^{2} < -t)$ [Kroll, P-K. '21]; extension to DV (PS) P

Intro 000	$\gamma^*N o MN'$	$\begin{array}{l} \gamma N \rightarrow (\gamma M) N' \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Conclusions O
DV	/MP		
	Transition form factors		
	$a\mathcal{T}(\xi, t, Q^2) = \int \mathrm{d}x \ \int \mathrm{d}u$	$T^a(x,\xi,u,\mu_{\varphi},\mu_F) F^a(x,\xi,t,$	$\mu_{arphi}) \phi(u,\mu_F)$
		a=q,g or NS	$S,S(\Sigma,g)$
	hard-scattering amplitude (ki	nown up to NLO)	
	$T^a(x,\xi,u,\mu_{\varphi},\mu_F) = \frac{\alpha_s}{2}$	$\frac{G(\mu_R)}{4\pi}T^{a(1)}(x,\xi,u)$	
	+-	$\frac{\alpha_s^2(\boldsymbol{\mu_R})}{(4\pi)^2} T^{a(2)}(x,\xi,u,\boldsymbol{\mu_R},\boldsymbol{\mu_{\varphi}},\boldsymbol{\mu_F})$	$+\cdots$
	distribution amplitude (DA) evo (known up to NNLO)	blution, similary GPD $\left(F^a ight)$ evolut	ion

$$\phi(x;\mu_F,\mu_0) = \phi^{(0)}(u,\mu_F,\mu_0) + \frac{\alpha_s(\mu_F)}{4\pi}\phi^{(1)}(u,\mu_F,\mu_0) + \frac{\alpha_s^2(\mu_F)}{(4\pi)^2}\phi^{(2)}(u,\mu_F,\mu_0) + \cdots$$

 \rightarrow evolution simpler to implement in conformal momentum representation [Müller '98]

$\gamma^* N \to M N'$	$\gamma N \to (\gamma M) N'$	C
00000000000	0000000	0

From x space to conformal momentum space

$${}^{a}\mathcal{T}(\boldsymbol{\xi}, \boldsymbol{t}, Q^{2}) = \int \mathrm{d}x \, \int \mathrm{d}u \, T^{a}(x, \boldsymbol{\xi}, y, \mu^{2})) \, \boldsymbol{F}^{a}(x, \boldsymbol{\xi}, \boldsymbol{t}, \mu^{2}) \, \phi(u, \mu^{2})$$

$$F...\mathsf{GPDs}_{,a=q,g} \text{ or } \mathsf{NS}_{,\mathsf{S}(\Sigma,g)}$$

conformal moments (analogous to Mellin moments in DIS $x^n \to C_n^{3/2}(x), C_n^{5/2}(x)$) [Müller, Lautenschläger, P-K., Schäfer 2014] [Duplančić, Müller, P-K. 2017]

$${}^{a}\mathcal{T}(\xi,t,\mathcal{Q}^{2}) = \frac{1}{2i} \int_{c-i\infty}^{c+i\infty} dj \left[i \pm \left\{ \begin{array}{c} \tan \\ \cot \end{array} \right\} \left(\frac{\pi j}{2} \right) \right] \xi^{-j-1} \\ \times \left[\operatorname{T}_{jk}(\mathcal{Q}^{2}/\mu^{2}) \overset{k}{\otimes} \phi_{\mathrm{M},k}(\mu^{2}) \right] F_{j}^{\mathsf{a}}(\xi,t,\mu^{2})$$

all channels calculated to NLO :

 $\begin{array}{c|c} \mathcal{H}_{M}^{q(+)}, \mathcal{E}_{M}^{q(+)}, \mathcal{H}_{M}^{g}, \mathcal{E}_{M}^{g} & 1_{L}^{--} = \mathsf{V}_{L} \\ \mathcal{H}_{M}^{q(-)}, \mathcal{\tilde{E}}_{M}^{q(-)}, \mathcal{\tilde{E}}_{M}^{q(-)} & 0^{-+} = \mathsf{PS} \\ \end{array} \begin{array}{c|c} \mathcal{H}_{M}^{q(+)}, \mathcal{\tilde{E}}_{M}^{q(+)}, \mathcal{\tilde{E}}_{M}^{q(-)}, \mathcal{\tilde{H}}_{M}^{g}, \mathcal{\tilde{E}}_{M}^{g} \\ \mathcal{H}_{L}^{+-} = \mathsf{PV}_{L} \\ (x-space, \text{ conformal mom. space, imaginary parts for disp. relations}) \end{array}$

Intro 000	$\gamma^*N o MN'$	$\begin{array}{c} \gamma N \rightarrow (\gamma M) N' \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Conclusions O
NLO pre	edictions		

- large NLO corrections and model dependence
- results sensitive to the choice of DA
- LO evolution important
- NLO calculations should include NLO evolution
- \bullet evolution effects can be called moderate, except for H/E at small ξ
- NLO global DIS+DVCS+DVMP fits needed

		0000000	0
Intro	$\gamma^* N \to M N'$	$\gamma N \to (\gamma M) N'$	Conclusions

- large NLO corrections and model dependence
- results sensitive to the choice of DA
- LO evolution important
- NLO calculations should include NLO evolution
- \bullet evolution effects can be called moderate, except for H/E at small ξ
- NLO global DIS+DVCS+DVMP fits needed

Intro 000	$\gamma^*N o MN'$	$\begin{array}{c} \gamma N \rightarrow (\gamma M) N' \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Conclusions O
NI O pre	edictions		

- large NLO corrections and model dependence
- results sensitive to the choice of DA
- LO evolution important
- NLO calculations should include NLO evolution
- \bullet evolution effects can be called moderate, except for H/E at small ξ
- NLO global DIS+DVCS+DVMP fits needed

NLO predictions		
$\begin{array}{ccc} \text{Intro} & & & \gamma^*N \to MN' \\ \text{ooo} & & & \text{oooooooooo} \end{array}$	$\begin{array}{c} \gamma N \rightarrow (\gamma M) N' \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Conclusions O

- large NLO corrections and model dependence
- results sensitive to the choice of DA
- LO evolution important
- NLO calculations should include NLO evolution
- \bullet evolution effects can be called moderate, except for H/E at small ξ
- NLO global DIS+DVCS+DVMP fits needed

Intro	$\gamma^* N \to M N'$	$\gamma N \to (\gamma M) N'$	Conclusions
000	00000000000	0000000	0

NLO for DV V_L production

Fig. 6. Relative NLO corrections to the imaginary part of the flavor singlet TFF \mathcal{F}_V^S (solid) broken down to the gluon (dashed), pure singlet quark (dash-dotted) and 'non-singlet' quark (dotted) at t = 0 GeV² (left panel) and t = -0.5 GeV² (right panel) at the initial scale $\mathcal{Q}_0^2 = 4$ GeV².

[Müller, Lautenschlager, P-K., Schäfer '14]

 big ln(1/ξ) terms for ξ <<, i.e, j = 0 pole, in gluon evolution and gluon coefficient function

NLO for DV PS/PV production

Figure 2: Relative NLO corrections (36) to the imaginary part of the TFF (21) versus x_B for the k = 0 (solid), k = 2 (dashed), k = 4 (dotted) partial waves arising from the quark-quark channel (left panel) and quark-gluon channel (right panel). The pure singlet quark contribution for k = 0 is shown as dash-dotted line in the left panel. [Duplančić, Müller, P-K., '17]

- $\bullet~$ NLO corrections higher for higher DA conformal moments $\Rightarrow~$ important for non-asymptotic DAs
- the role of gluons (PV production) smaller since LO vanishes

Intro

 $\begin{array}{l} \gamma N \to (\gamma M) N' \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$

Conclusions 0

Global NLO fits (DIS+DVCS+DVV_LP)

small-x global fits to HERA collider data (ρ_0 and ϕ)

- LO: [Meskauskas, Müller '11] $(\chi^2/n_{
 m d.o.f}pprox 2)$
- NLO: [Lautenschlager, Müller, Schäfer '13]
- hard scattering amplitude corrected [Duplančić, Müller, P-K. '17]
- new NLO fit using GEPARD software: $\chi^2/n_{\rm d.o.f}=$ 254.3/231

talk K. Kumerički

Note: just meson DA tw-3 contributions ($\mu_{\pi} = 2$ GeV)

distribution amplitudes (DAs):

twist-2 $(q\bar{q})$: ϕ_P 2-body $(q\bar{q})$ twist-3 ϕ_{Pp} , $\phi_{P\sigma}$ 3-body $(q\bar{q}g)$ twist-3 ϕ_{3P} \rightarrow connected by equations of motion (EOMs)

$\gamma^* N \to M N'$	$\gamma N \to (\gamma M) N'$	Con
0000000000000	0000000	0

Subprocess amplitudes: twist-3

General structure:

$$\mathcal{H}^{P,tw3} = \mathcal{H}^{P,tw3,q\bar{q}} + \mathcal{H}^{P,tw3,q\bar{q}g}$$

$$= (\mathcal{H}^{P,\phi_{Pp}} + \mathcal{H}^{P,\phi_{P2}^{EOM}}) + (\mathcal{H}^{P,q\bar{q}g,C_{F}} + \mathcal{H}^{P,q\bar{q}g,C_{G}})$$

$$= \mathcal{H}^{P,\phi_{Pp}} + \mathcal{H}^{P,\phi_{3P},C_{F}} + \mathcal{H}^{P,\phi_{3P},C_{G}}$$

- 2- and 3-body contributions necessary for gauge invariance
- photoproduction (Q
 ightarrow 0): $\mathcal{H}^{P,\phi_{Pp}} = 0$ [Kroll, P-K '18]
- DVMP ($\hat{t} \rightarrow 0$):
 - end-point singularities in $\mathcal{H}^{P,\phi_{Pp}} \int_{0}^{1} \frac{d\tau}{\overline{\tau}} \phi_{Pp}(\tau)$ \Rightarrow modified hard-scattering picture (with k_{\perp}) [Golosk., Kroll, '10]
 - complete twist-3 contribution [Kroll, P-K '21]
 - work in progress in modified and collinear picture (effect. m_g^2)

l	r	1	1		r	1	0
0	~		r	5	1	ŕ	5

$\gamma^* N \to M N'$

 $\gamma N \to (\gamma M) N'$

Conclusions 0

Photoproduction (π)

ro	$\gamma^* N \to M N'$	$\gamma N \to (\gamma M) N'$	Conclusions
0	00000000000000	00000000	0

Spin effects - photoproduction

 $A_{LL}(K_{LL})\ldots$ correlation of the helicities of the photon and incoming (outgoing) nucleon

 \rightarrow characteristic signature for dominance of twist-3 (like $\sigma_T\gg\sigma_L$ in DVMP)

Intro 000	$\gamma^* N \to M N'$	$\begin{array}{c} \gamma N \rightarrow (\gamma M) N' \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Conclusions O
Summarv			

- WA (PS) P:
 - ullet meson's twist-3 contributions (γ_T^*) dominate for $\pi {\rm s}$ and η
 - different combinations of form factors \Rightarrow possibility of extraction \Rightarrow large -t behaviour of transversity GPDs (F_T^q)
- DV (PS) P
 - twist-3 dominates (γ_T^*)
 - complete (2- and 3-body) analysis underway
 - twist-2 (γ_L^*) NLO contributions available and should be tested
- DV (V $_L$) P
 - twist-2 (γ_L^*) contributions can describe the data
 - NLO tw2 contributions available for implementation; included in GeParD \Rightarrow global DIS+DVCS+DVMP fits performed
- Experimental goals
 - $\bullet~$ clear L/T separation (eg., for DV πP JLab, Hall C)

Intro	$\gamma^* N \to M N'$	$\gamma N \to (\gamma M) N'$	Conclusions
000	00000000000	0000000	0

Photon meson photoproduction

 $\gamma + N \to \gamma + M + N'$

large angle factorisation à la Brodsky Lepage

(á la "time-like" DVCS)

1/in an ation			
000	00000000000	0000000	0
Intro	$\gamma^* N \to M N'$	$\gamma N \rightarrow (\gamma M) N'$	Conclusions

Kinematics

 $\gamma(q) + N(p_1) \rightarrow \gamma(k) + \rho(p_{\rho}, \varepsilon_{\rho}) + N'(p_2)$

$$u' = (p_{\rho} - q)^{2}$$

$$t' = (k - q)^{2}$$

$$s' = M_{\gamma\rho}^{2} = (k + p_{\rho})^{2}$$

$$t = (p_{2} - p_{1})^{2}$$

$$s = S_{\gamma N}^{2} = (q + p_{1})^{2}$$

$$\xi = rac{ au}{2- au}$$
, $au = rac{M_{\gamma
ho}^2}{S_{\gamma N}^2-M^2}$

• factorization requires:
$$-u', -t' > 1 \text{ GeV}^2$$
 and $(-t)_{\min} \leqslant -t \leqslant .5 \text{ GeV}^2$

Intro	$\gamma^* N \to M N'$	$\gamma N \rightarrow (\gamma M) N'$	Conclusions
000	00000000000	0000000	0

Kinematics

 $\gamma(q) + N(p_1) \rightarrow \gamma(k) + \rho(p_{\rho}, \varepsilon_{\rho}) + N'(p_2)$

$$u' = (p_{\rho} - q)^2 \gg$$

$$t' = (k - q)^2 \gg$$

$$s' = M_{\gamma\rho}^2 = (k + p_{\rho})^2 \gg$$

$$t = (p_2 - p_1)^2 \ll$$

$$s = S_{\gamma N}^2 = (q + p_1)^2$$

$$\xi=\frac{\tau}{2-\tau}$$
 , $\tau=\frac{M_{\gamma\rho}^2}{S_{\gamma N}^2-M^2}$

• factorization requires:
$$-u', -t' > 1 \text{ GeV}^2$$
 and $(-t)_{\min} \leqslant -t \leqslant .5 \text{ GeV}^2$

Photon- π^0 photoproduction

 $\gamma q \rightarrow \gamma (q \bar{q}) q$, $\gamma g \rightarrow \gamma (q \bar{q}) g$

 $(M)\pi^0$ photoproduction $\gamma\gamma \rightarrow (q\bar{q})(q\bar{q})$ $\gamma\gamma \rightarrow (gg)(q\bar{q})$

 $\begin{array}{ll} \gamma\gamma \rightarrow (PS)\pi^0 & \rightarrow \widetilde{H}, \widetilde{E} \\ \gamma\gamma \rightarrow (S)\pi^0 & \rightarrow H, E \\ \gamma\gamma \rightarrow (PS)_g\pi^0 & \rightarrow \widetilde{H}_g, \widetilde{E}_g \\ \gamma\gamma \rightarrow (S)_g\pi^0 & \rightarrow H_g, E_g \\ \gamma\gamma \rightarrow (T)_g\pi^0 & \\ \rightarrow H_{Tg}, E_{Tg}, \widetilde{H}_{Tg}, \widetilde{E}_{Tg} \end{array}$

LO: [Bayer, Grozin '85]

 $S_{\gamma N}$ vary in the set 8, 10, 12, 14, 16, 18, 20 GeV² (from left to right)

solid: "valence" model dotted: "standard" model

[Duplančić, P-K, Pire, Szymanowski, Wallon '18]

[Duplančić, P-K, Nabeebaccus, Pire, Szymanowski, Wallon '22]

	$\phi_{\rm as}(z) = 6z(1-z)$	$\phi_{\rm hol}(z) = \frac{8}{\pi} \sqrt{z(1-z)}$
"valence"	solid	dashed
"standard"	dotted	dash-dotted

[Duplančić, P-K, Nabeebaccus, Pire, Szymanowski, Wallon '22]

	$\phi_{\rm as}(z) = 6z(1-z)$	$\phi_{\rm hol}(z) = \frac{8}{\pi}\sqrt{z(1-z)}$
" valence"	solid	dashed
"standard"	dotted	dash-dotted

tro	$\gamma^* N \to M N'$	$\gamma N \to (\gamma M) N'$	Conclusions
00	00000000000	0000000	0

Summary

$\gamma N \to (\gamma M) N'$

- provides additional channel for extracting GPDs
- it can probe chiral-odd GPDs at the leading twist
- proof of factorisation for this family of processes
- good statistics in various experiments, particularly at JLab
- \bullet small ξ limit of GPDs can be investigated by exploiting high energies available at EIC
| Intro
000 | $\gamma^* N \to M N'$ | $\begin{array}{c} \gamma N \to (\gamma M) N' \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$ | Conclusions
• |
|--------------|-----------------------|--|------------------|
| Conclusions | | | |

- Meson production processes promissing in accessing additional information about GPDs.
- Meson distribution amplitudes additional nontrivial nonperturbative input.

Intro 000	$\gamma^* N \to M N'$	$\begin{array}{c} \gamma N \to (\gamma M) N' \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Conclusions •
Conclusions			

- Meson production processes promissing in accessing additional information about GPDs.
- Meson distribution amplitudes additional nontrivial nonperturbative input.

Thank you.

App.1	App.2	App.3	NLO fits	γM
00000	00000	000000000000000	000	00000

- elementary hard-scattering amplitudes for twist-2 collinear approximation (t=0):
 - DVCS $(\gamma^* q \to \gamma^{(*)} q)$ \Leftrightarrow meson transition form factor $(\gamma^* \gamma^{(*)} \to (q\bar{q}))$
 - DVMP $(\gamma^* q \rightarrow (q\bar{q})q)$ \Leftrightarrow meson electromagnetic form factor, i.e., meson-to-meson ff $(\gamma^*(q\bar{q}) \rightarrow (q\bar{q}))$
- bookkeeping of momentum fractions

$$\frac{\xi+x}{2\xi} = u \qquad (\frac{\xi-x}{2\xi} = 1-u)$$

but u real so care with $i\epsilon$ in propagators, or a posteriori analytical continuation of energy, i.e., ξ and not u:

$$u \to \frac{\xi - i\epsilon + x}{2(\xi - i\epsilon)} = \frac{\xi + x}{2\xi} + i\epsilon \mathrm{sign} x$$

NLO DV V_L prod.: [Ivanov et al '04,]

NLO DV V_L (corr.), PS, (S, PV_L) prod.: [Duplančić, Müller, P-K. '17]

• factorization formula for singlet DVCS CFFs:

$${}^{S}\mathcal{H}(\xi,t,\mathcal{Q}^{2}) = \int \mathrm{d}x \ \boldsymbol{C}(x,\xi,\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu)) \ \boldsymbol{H}(x,\xi,t,\mu^{2})$$

• ... in terms of conformal moments

(analogous to Mellin moments in DIS: $x^n \to C_n^{3/2}(x), C_n^{5/2}(x)$):

$$= 2 \sum_{j=0}^{\infty} \xi^{-j-1} C_j (\mathcal{Q}^2 / \mu^2, \alpha_s(\mu)) \ \boldsymbol{H}_j(\xi = \eta, t, \mu^2)$$

$$H_j^q(\eta,\ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^1 \mathrm{d}x \ \eta^{j-1} C_j^{3/2}(x/\eta) H^q(x,\eta,\ldots)$$

 H^a_i even polynomials in η with maximal power η^{j+1}

• series summed using Mellin-Barnes integral over complex j:

$$= \frac{1}{2i} \int_{c-i\infty}^{c+i\infty} dj \left[i + \tan\left(\frac{\pi j}{2}\right) \right] \xi^{-j-1} C_j(\mathcal{Q}^2/\mu^2, \alpha_s(\mu)) \mathbf{H}_j(\xi, t, \mu^2)$$

[Müller 2006, Kumerički, Müller, P-K., Schäfer 2006, 2007]

$$\begin{array}{ccc} \begin{array}{c} & \text{App.1} & \text{App.2} & \text{App.2} & \text{App.3} & \text{NLO fits} & \gamma M \\ \hline \textbf{ooco} & \textbf{oo$$

Leading partial wave

 Leading wave – simplest case: (at NLO data can be fitted with leading wave only)

Regge-inspired ansatz

$$\alpha_a(t) = \alpha_a(0) + 0.15t$$
 $F_a(t) = \frac{j+1-\alpha(0)}{j+1-\alpha(t)} \left(1 - \frac{t}{M_0^{a^2}}\right)^{-p_a}$

- for t = 0 corresponds to x-space PDFs of the form $\Sigma(x) = N'_{\Sigma} x^{-\alpha_{\Sigma}(0)} (1-x)^7; \qquad G(x) = N'_{\mathsf{G}} x^{-\alpha_{\mathsf{G}}(0)} (1-x)^5$
- fit parameters: N_{Σ} , $\alpha_{\Sigma}(0)$, $\alpha_{G}(0)$ (DIS) and M_{0}^{Σ} (DVCS) ($M_{0}^{G} = \sqrt{0.7}$ GeV from J/Ψ prod.)

App.1 00000	App.2	App.3 000000000000000	NLO fits 000	$\begin{smallmatrix} \gamma M \\ \circ \circ \circ \circ \circ \circ \end{smallmatrix}$
Experim	ental status			

DVCS

DVMP

• in the last decade: vector meson (ρ , J/Ψ , ϕ) production at H1 and ZEUS (HERA, DESY), COMPASS (CERN), pseudoscalar mesons (π , η) at CLAS (JLab) ...

→ new results from JLab@12 (2018) COMPASS@LHC EIC (Electron Ion Collider at Brokhaven, 2030) LHeC proposed

[[]from Kumericki et al. 2015]

• Fourier transform of GPD for $\eta = 0$ can be interpreted as probability density depending on x and transversal distance b [Burkardt '00, '02]

$$H(x,\vec{b}) = \int \frac{d^2\vec{\Delta}}{(2\pi)^2} e^{-i\vec{b}\cdot\vec{\Delta}} H(x,\eta=0,\Delta^2=-\vec{\Delta}^2)$$

App.1	App.2	App.3	NLO fits	γM
00000	00000	••••••	000	
Subprocess	amplitudes	Н		

$$\begin{split} q\bar{q} & \to \pi \text{ projector} & [\text{Beneke, Feldmann '00}] \\ & (\tau q' + k_{\perp}) + (\bar{\tau}q' - k_{\perp}) = q' \end{split}$$

$$\mathcal{P}_2^{\pi} & \sim \quad f_{\pi} \left\{ \gamma_5 \, q' \phi_{\pi}(\tau, \mu_F) \\ & + \mu_{\pi}(\mu_F) \Big[\gamma_5 \, \phi_{\pi p}(\tau, \mu_F) \\ & - \frac{i}{6} \, \gamma_5 \, \sigma_{\mu\nu} \, \frac{q'^{\mu} n^{\nu}}{q' \cdot n} \, \phi'_{\pi\sigma}(\tau, \mu_F) \\ & + \frac{i}{6} \, \gamma_5 \, \sigma_{\mu\nu} \, q'^{\mu} \phi_{\pi\sigma}(\tau, \mu_F) \frac{\partial}{\partial k_{\perp\nu}} \Big] \right\}_{k_{\perp} \to 0} \end{split}$$

App.1	App.2	App.3	NLO fits	γM
00000	00000	• 000000 00000000	000	00000
Subprod	ess amplitu	$\operatorname{des} \mathcal{H}$		

App.1 00000	App.2 00000	App.3 •0000000000000000	00	NLO fits 000	$\begin{array}{c} \gammaM\\ 00000 \end{array}$
Subprocess	amplitudes	${\cal H}$			
_	$qar q o \pi$ p	projector $(\tau q' +$	[Beneke, Feldmann $(\bar{\tau}q' - k_{\perp}) + (\bar{\tau}q' - k_{\perp})$		
"	${\cal P}_2^\pi$ ~	$f_{\pi} \left\{ \gamma_5 q' \phi_{\pi}(\tau, \mu) \right\}$	$\iota_F)$		
		$+\mu_{\pi}(\mu_{F}) \left[\gamma_{5} \phi_{\pi} \right]$ $-\frac{i}{c} \gamma_{5} \sigma_{\mu\nu} \frac{q'^{\mu} n}{r}$	$p(au, \mu_F)$ $- \phi'_{\pi\sigma}(au, \mu_F)$		
		$+\frac{i}{6}\gamma_5 \sigma_{\mu\nu} q'^{\mu} \phi_7$	$rac{\mu}{\pi\sigma(au,\mu_F)}rac{\partial}{\partial k_{\perp u}}$	$\left \right] \right\}_{k_{\perp} \to 0}$	
22 Constanting	$q\bar{q}g ightarrow \pi$	projector	[Kroll, P-K '18] $\tau_a q' + \tau_b q' + \tau_b$	$\overline{q}_g q' = q'$	

$$\mathcal{P}_3^{\pi} \sim f_{3\pi}(\mu_F) \frac{i}{g} \gamma_5 \sigma_{\mu\nu} q'^{\mu} g_{\perp}^{\nu\rho} \frac{\phi_{3\pi}(\tau_a, \tau_b, \tau_g, \mu_F)}{\tau_g}$$

 $\begin{array}{l} \mu_{\pi}=m_{\pi}^{2}/(m_{u}+m_{d})\cong 2 \ \text{GeV}, \ f_{3\pi}\sim \mu_{\pi}\\ \text{distribution amplitudes (DAs):}\\ \text{twist-2 } (q\bar{q}): \phi_{\pi}\\ \text{2-body } (q\bar{q}) \ \text{twist-3 } \phi_{\pi p}, \ \phi_{\pi \sigma} \quad \text{3-body } (q\bar{q}g) \ \text{twist-3 } \phi_{3\pi}\\ \rightarrow \text{connected by equations of motion (EOMs)} \end{array}$

App.1 00000)	App.2 00000	App.3 ○●○○○○○○○○○○○○○○	NLO fits 000	γ <i>M</i> 00000
Hel	icity am	plitu	des ${\cal M}$ for WAMP		
	$\mathcal{M}^P_{0+,\mu+}$	=	$\frac{e_0}{2} \sum_{\lambda} \left[\mathcal{H}^P_{0\lambda,\mu\lambda} \left(R^P_V(t) + 2\lambda R^P_A(t) \right) \right]$	$t) \end{pmatrix} \rightarrow twist-2$	
		-	$-2\lambda \frac{\sqrt{-t}}{2m} \mathcal{H}^P_{0-\lambda,\mu\lambda} \bar{S}^P_T(t) \Big] \longrightarrow tv$	vist-3	
	$\mathcal{M}^P_{0-,\mu+}$	=	$rac{e_0}{2} \sum_{\lambda} \Big[rac{\sqrt{-t}}{2m} \mathcal{H}^P_{0\lambda,\mu\lambda} R^P_T(t) o t$	wist-2	
		-	$-2\lambda \frac{t}{2m^2} \mathcal{H}^P_{0-\lambda,\mu\lambda} S^P_S(t) \Big] + e_0 \mathcal{H}^P_0$	$S_{-,\mu+}^{P} S_{T}^{P}(t) \rightarrow \text{twist-3}$	
		μ	photon helicity, λ quark helicities,	$P \in \{\pi^{\pm}, \pi^0, \eta_8, \eta_1, \eta, \eta'\}$,

$$R_V^a(t) = \int \frac{dx}{x} H^a(x,\xi=0,t)$$
 ... form factors

$$\begin{aligned} a \in \{u, d\} \Rightarrow R_V^{\pi^{\pm}} = R_V^u - R_V^d, \ R_V^{\pi^0} = \frac{1}{\sqrt{2}} \left(e_u R_V^u - e_d R_V^d \right) \\ R_V^{\eta_8} &\approx \frac{1}{\sqrt{2}} R_V^{\eta_1} \approx \frac{1}{\sqrt{6}} \left(e_u R_V^u + e_d R_V^d \right) \end{aligned}$$

 $(H, \tilde{H}, E) \to (\mathbf{R}_V, \mathbf{R}_A, \mathbf{R}_T)$

 $(H_T, \tilde{H}_T, \bar{E}_T) \rightarrow (S_T, S_S, \bar{S}_T)$ transversity GPDs

App.1	App.2	App.3	NLO fits	$\substack{\gamma M \\ 00000}$
00000	00000	00000000000000000000000000000000000	000	
DAs and	EOMs			

$$\tau \phi_{\pi p}(\tau) + \frac{\tau}{6} \phi_{\pi \sigma}'(\tau) - \frac{1}{3} \phi_{\pi \sigma}(\tau) = \phi_{\pi 2}^{EOM}(\bar{\tau})$$
$$\bar{\tau} \phi_{\pi p}(\tau) - \frac{\bar{\tau}}{6} \phi_{\pi \sigma}'(\tau) - \frac{1}{3} \phi_{\pi \sigma}(\tau) = \phi_{\pi 2}^{EOM}(\tau)$$

$$\phi_{\pi 2}^{EOM}(\tau) = 2 \frac{f_{3\pi}}{f_{\pi} \mu_{\pi}} \int_0^{\tau} \frac{d\tau_g}{\tau_g} \phi_{3\pi}(\tau, \bar{\tau} - \tau_g, \tau_g)$$

- EOMs and symmetry properties
 ⇒ the subprocess amplitudes in terms of two twist-3 DAs and 2- and 3-body contributions combined
- combined EOMs \rightarrow first order differential equation \Rightarrow from known form of $\phi_{3\pi}$ [Braun, Filyanov '90] one determines $\phi_{\pi p}$ (and $\phi_{\pi \sigma}$)

Note: $q\bar{q}g$ projector and EOMs were derived using light-cone gauge for constituent gluon

App.1 00000	App.2 00000	App.3	NLO fits 000	$\stackrel{\gamma M}{_{00000}}$
Subprocess	amplitudes:	twist-2		

Transverse photon polarization ($\mu = \pm 1$) T

$$\begin{aligned} \mathcal{H}_{0\lambda,\,\mu\lambda}^{\pi,tw2} &\sim \quad f_{\pi} \, C_{F} \, \alpha_{s}(\mu_{R}) \, \frac{\sqrt{-\hat{t}}}{\hat{s}+Q^{2}} \, \int_{0}^{1} \, d\tau \, \phi_{\pi}(\tau) \left[(2\lambda\mu+1) \left(\frac{(\hat{s}\tau+Q^{2})(\hat{s}+Q^{2})-\hat{u}Q^{2}\bar{\tau}}{\hat{s}\bar{\tau}(Q^{2}\bar{\tau}-\hat{t}\tau)} \, e_{a} \right. \\ &\left. + \frac{(\hat{s}\tau-Q^{2})(\hat{s}+Q^{2})-\hat{u}Q^{2}\bar{\tau}}{\hat{u}\tau(Q^{2}\tau-\hat{t}\bar{\tau})} \, e_{b} \right) + (2\lambda\mu-1) \left(\frac{\hat{u} \, e_{a}}{(Q^{2}\bar{\tau}-\hat{t}\tau)} + \frac{\hat{s}\bar{\tau} \, e_{b}}{\tau(Q^{2}\tau-\hat{t}\bar{\tau})} \right) \right] \end{aligned}$$

Longitudinal photon polarization L

$$\mathcal{H}_{0\lambda,\,0\lambda}^{\pi,tw2} \quad \sim \quad f_{\pi} \, C_F \, \alpha_s(\mu_R) \, \lambda \, \frac{Q\sqrt{-\hat{u}\hat{s}}}{\hat{s}+Q^2} \, \int_0^1 \, d\tau \, \phi_{\pi}(\tau) \left(\frac{\hat{u} \, e_a}{\hat{s}(Q^2\bar{\tau}-\hat{t}\tau)} - \frac{(\hat{t}+\tau\hat{u}) \, e_b}{\tau\hat{u}(Q^2\tau-\hat{t}\bar{\tau})}\right)$$

$$\begin{array}{l} \rightarrow \mbox{ photoproduction } (Q \rightarrow 0) \colon \quad \mathcal{H}_{L}^{\pi,tw2} \Big|_{Q \rightarrow 0} = 0 \\ \\ \hline \mathcal{H}_{T}^{\pi,tw2} \Big|_{Q \rightarrow 0} \sim \ f_{\pi} \ C_{F} \ \alpha_{s}(\mu_{R}) \ \frac{1}{\sqrt{-\hat{t}}} \ \int_{0}^{1} \ \frac{d\tau}{\tau} \ \phi_{\pi}(\tau) \left((1+2\lambda\mu) \ \hat{s} - (1-2\lambda\mu) \ \hat{u} \right) \left(\frac{e_{a}}{\hat{s}} + \frac{e_{b}}{\hat{u}} \right) \\ \\ \rightarrow \mbox{ DVMP } (\hat{t} \rightarrow 0) \colon \quad \mathcal{H}_{T}^{\pi,tw2} \Big|_{\hat{t} \rightarrow 0} = 0 \\ \\ \hline \mathcal{H}_{L}^{\pi,tw2} \Big|_{\hat{t} \rightarrow 0} \colon \qquad \hat{s} = -\frac{\xi - x}{2\xi} \ Q^{2} \ , \ \hat{u} = -\frac{\xi + x}{2\xi} \ Q^{2} \quad \Rightarrow \mbox{ well known LO result for DVMP} \end{array}$$

App.1 00000	App.2 00000	App.3 00000000000000	NLO fits 000	$\begin{array}{c} \gamma M \\ \circ \circ \circ \circ \circ \end{array}$
Subprocess	amplitudes:	twist-3		
General st	ructure:			

$$\mathcal{H}^{P,tw3} = \mathcal{H}^{P,tw3,q\bar{q}} + \mathcal{H}^{P,tw3,q\bar{q}g}$$

= $(\mathcal{H}^{P,\phi_{\pi p}} + \mathcal{H}^{P,\phi_{\pi 2}^{EOM}}) + (\mathcal{H}^{P,q\bar{q}g,C_F} + \mathcal{H}^{P,q\bar{q}g,C_G})$
= $\mathcal{H}^{P,\phi_{\pi p}} + \mathcal{H}^{P,\phi_{3\pi},C_F} + \mathcal{H}^{P,\phi_{3\pi},C_G}$

- 2-body twist-3 $\sim C_F$; 3-body C_F and C_G proportional parts
- C_G part is separately gauge invariant
- the sum of 2- and 3-body C_F parts is gauge invariant (QED and QCD)
- no end-point singularities for $\hat{t} \neq 0$!

App.1 00000	App.2 00000	App.3	NLO fits 000	γM 00000
Subprocess	amplitudes:	twist-3 at \boldsymbol{Q}	$<<$ or $\hat{t}<<$	

General structure:

$$\mathcal{H}^{P,tw3} = \mathcal{H}^{P,tw3,q\bar{q}} + \mathcal{H}^{P,tw3,q\bar{q}g}$$

= $(\mathcal{H}^{P,\phi_{\pi p}} + \mathcal{H}^{P,\phi_{\pi 2}^{EOM}}) + (\mathcal{H}^{P,q\bar{q}g,C_F} + \mathcal{H}^{P,q\bar{q}g,C_G})$
= $\mathcal{H}^{P,\phi_{\pi p}} + \mathcal{H}^{P,\phi_{3\pi},C_F} + \mathcal{H}^{P,\phi_{3\pi},C_G}$

•
$$\mathcal{H}_L^{P,tw3} \sim Q\sqrt{-t} \to 0$$
 both for $Q \to 0$ and $\hat{t} \to 0$

• photoproduction $(Q \rightarrow 0)$:

•
$$\mathcal{H}^{P,\phi_{\pi p}}=0$$
 [Kroll, P-K '18]

- DVMP ($\hat{t} \rightarrow 0$):
 - end-point singularities in $\mathcal{H}^{P,\phi_{\pi p}}$ [Goloskokov, Kroll '10]

•
$$\mathcal{H}^{P,\phi_{\pi^2}^{EOM}} = 0$$

App.1 00000	App.2 00000	App.3	NLO fits 000	$\stackrel{\gamma M}{_{00000}}$
Subprocess	amplitudes:	twist-3 at $Q \rightarrow 0$,	$t \to 0$	

photoproduction

$$\begin{aligned} \mathcal{H}^{P,tw3}_{0-\lambda,\,\mu\lambda}|_{Q^2 \to 0} &\sim \quad (2\lambda-\mu) \, f_{3\pi} \, \alpha_S(\mu_R) \, \sqrt{-\hat{u}\hat{s}} \int_0^1 \, d\tau \, \int_0^{\bar{\tau}} \, \frac{d\tau_g}{\tau_g} \, \phi_{3\pi}(\tau,\bar{\tau}-\tau_g,\tau_g) \\ &\times \left[C_F \, \left(\frac{1}{\bar{\tau}^2} - \frac{1}{\bar{\tau}(\bar{\tau}-\tau_g)} \right) \left(\frac{e_a}{\hat{s}^2} + \frac{e_b}{\hat{u}^2} \right) \, + \right. \\ &\left. - C_G \, \frac{2}{\tau\tau_g} \, \frac{\hat{t}}{\hat{s}\hat{u}} \left(\frac{e_a}{\hat{s}} + \frac{e_b}{\hat{u}} \right) \right] \end{aligned}$$

DVMP

$$\begin{aligned} \mathcal{H}_{0-\lambda,\mu\lambda}^{P,\phi_{\pi p}}|_{\hat{t}\to0} &\sim (2\lambda+\mu) f_{\pi}\mu_{\pi}C_{F}\alpha_{S}(\mu_{R})\sqrt{-\frac{\hat{u}}{\hat{s}}} \left[\frac{e_{a}}{\hat{s}}+\frac{\hat{s}}{\hat{u}}\frac{e_{b}}{\hat{u}}\right] \int_{0}^{1} \frac{d\tau}{\bar{\tau}}\phi_{\pi p}(\tau) \\ \mathcal{H}_{0-\lambda,\mu\lambda}^{P,C_{F},\phi_{3\pi}}|_{\hat{t}\to0} &\sim -(2\lambda+\mu) f_{3\pi}C_{F}\alpha_{S}(\mu_{R})\sqrt{-\frac{\hat{u}}{\hat{s}}} \left(\frac{e_{a}}{\hat{s}}+\frac{\hat{s}}{\hat{u}}\frac{e_{b}}{\hat{u}}\right) \\ &\times \int_{0}^{1} \frac{d\tau}{\bar{\tau}^{2}} \int_{0}^{\bar{\tau}} \frac{d\tau_{g}}{\tau_{g}(\bar{\tau}-\tau_{g})} \phi_{3\pi}(\tau,\bar{\tau}-\tau_{g},\tau_{g}) \\ \mathcal{H}_{0-\lambda,\mu\lambda}^{P,qqg,C_{G}}|_{\hat{t}\to0} &\sim (2\lambda+\mu) f_{3\pi}C_{G}\alpha_{S}(\mu_{R})\frac{Q^{2}}{\sqrt{-\hat{s}\hat{u}}} \left(\frac{e_{a}}{\hat{s}}+\frac{e_{b}}{\hat{u}}\right) \\ &\times \int_{0}^{1} \frac{d\tau}{\bar{\tau}} \int_{0}^{\bar{\tau}} \frac{d\tau_{g}}{\tau_{g}(\bar{\tau}-\tau_{g})} \phi_{3\pi}(\tau,\bar{\tau}-\tau_{g},\tau_{g}) \end{aligned}$$

I flavour-mixing:

simplest: flavour-mixing embedded in the decay constants

[review Feldmann '00]

Dian	dictribution	amplitudas		
00000	00000	000000000000000000000000000000000000000	000	00000
App.1	App.2	App.3	NLO fits	γM

Pion distribution amplitudes

Twist-2 DA:
$$\phi_{\pi}(\tau, \mu_F) = 6\tau \bar{\tau} \left[1 + a_2(\mu_F) C_2^{3/2}(2\tau - 1) \right]$$

Twist-3 DAs:

$$\begin{split} \phi_{3\pi}(\tau_a, \tau_b, \tau_g, \mu_F) &= 360\tau_a \tau_b \tau_g^2 \Big[1 + \omega_{1,0}(\mu_F) \, \frac{1}{2} (7\tau_g - 3) \\ &+ \omega_{2,0}(\mu_F) \, (2 - 4\tau_a \tau_b - 8\tau_g + 8\tau_g^2) \\ &+ \omega_{1,1}(\mu_F) \, (3\tau_a \tau_b - 2\tau_g + 3\tau_g^2) \Big] \text{[Braun, Filyanov '90]} \end{split}$$

using EOMs [Kroll, P-K '18]:

$$\phi_{\pi p}(\tau,\mu_F) = 1 + \frac{1}{7} \frac{f_{3\pi}(\mu_F)}{f_{\pi}\mu_{\pi}(\mu_F)} \Big(7\,\omega_{1,0}(\mu_F) - 2\,\omega_{2,0}(\mu_F) - \omega_{1,1}(\mu_F) \Big) \\ \times \Big(10\,C_2^{1/2}(2\tau - 1) - 3\,C_4^{1/2}(2\tau - 1) \Big) \,, \quad \phi_{\pi\sigma}(\tau) = \dots$$

Parameters:

•
$$a_2(\mu_0) = 0.1364 \pm 0.0213$$
 at $\mu_0 = 2$ GeV [Braun et al '15] (lattice)

- $\omega_{10}(\mu_0) = -2.55, \omega_{10}(\mu_0) = 0.0$ and $f_{3\pi}(\mu_0) = 0.004 \text{ GeV}^2$. [Ball '99]
- $\omega_{20}(\mu_0) = 8.0$ [Kroll, P-K '18] fit to π^0 photoproduction data [CLAS '17]

Evolution of the decay constants and DA parameters taken into account. Choice of scales: $\mu_R{}^2=\mu_F{}^2=\hat{t}\hat{u}/\hat{s}$

App.1	App.2	App.3	NLO fits	γM
00000	00000	○○○○○○○○○●○○○○○○	000	
η , η' dis	tribution an	nplitudes		

Twist-2 DA:

$$\phi_8(\tau,\mu_F) = 6\tau\bar{\tau} \left[1 + a_2^8(\mu_F) C_2^{3/2}(2\tau-1)\right]$$

$$\phi_{1,q}(\tau,\mu_F) = 6\tau\bar{\tau} \left[1 + a_2^1(\mu_F) C_2^{3/2}(2\tau-1)\right]$$

$$\phi_{1,g}(\tau,\mu_F) = 30\tau^2\bar{\tau}^2 \left[1 + a_2^g(\mu_F) C_1^{5/2}(2\tau-1)\right]$$

Twist-3 DAs:

assumption

$$\phi_{38}(\tau_a, \tau_b, \tau_g, \mu_F) = \phi_{31}(\tau_a, \tau_b, \tau_g, \mu_F) \approx \phi_{3\pi}(\tau_a, \tau_b, \tau_g, \mu_F)$$

Parameters:

- $a_2^8(\mu_0) = -0.039$, $a_2^1(\mu_0) = -0.057$, $a_2^g(\mu_0) = 0.038$ [Kroll, KPK '13], and other choices tested
- $f_{38}(\mu_0) = 0.86 f_{3\pi}(\mu_0) \Leftarrow$ [Ball '99; Braun, Filyanov '90]
- $f_{31}(\mu_0) = 0.86 f_{3\pi}(\mu_0) \Leftarrow \eta \exp$: [GlueX preliminary '20]
- mixing parameters from [Feldmann, Kroll, Stech '98]

 $R_i \ldots 1/x$ moment of $\xi = 0$ GPD (K_i)

- $R_V(\leftarrow H)$, $R_T(\leftarrow E)$ from nucleon form factor analysis [Diehl, Kroll '13]
- $R_A(\leftarrow \tilde{H})$ form factor analysis and WACS KLL asymmetry [Kroll '17]
- $S_T(\leftarrow H_T)$, $\bar{S}_T(\leftarrow \bar{E}_T)$ low -t from DVMP analysis [Goloskokov, Kroll '11]
- $S_S(\leftarrow \tilde{H}_T) \cong \bar{S}_T/2 \ (\bar{E}_T = 2\tilde{H}_T + E_T)$

GPD parameterization [Diehl, Feldmann, Jakob, Kroll '04, Diehl, Kroll '13]

$$K_i^a = k_i^a(x) \exp\left[t f_i^a(x)\right], \ f_i^a(x) = \left(B_i^a - \alpha_i'^a \ln x\right)(1-x)^3 + A_i^a x(1-x)^2$$

- strong x t correlation
- power behaviour for large (-t)
- choice for transversity GPDs $A = 0.5 \text{ GeV}^{-2}$

App.1	App.2	App.3	NLO fits	$\begin{array}{c} \gammaM\\ \text{00000} \end{array}$
00000	00000	○○○○○○○○○○●○○○	000	
Electrop	roduction (π)		

• information on S_S (\tilde{H}_T) from σ_{TT} (suppressed for DVMP)

App.1 00000	App.2 00000	App.3	NLO fits 000	$ \begin{array}{c} \gamma M \\ \circ \circ \circ \circ \circ \circ \end{array} $
Spin effects	s - photopro	duction		

 $A_{LL}(K_{LL})\ldots$ correlation of the helicities of the photon and incoming (outgoing) nucleon

 \rightarrow characteristic signature for dominance of twist-3 (like $\sigma_T \gg \sigma_L$ in DVMP)

 $A_{LS}(K_{LS})\ldots$ correlation of the helicities of the photon and sideway polarization of the incoming (outgoing) nucleon

Spin effects - electroproduction

App.1	App.2	App.3	NLO fits	$\begin{smallmatrix} \gamma M \\ \circ \circ \circ \circ \circ \circ \end{smallmatrix}$
00000	00000	○○○○○○○○○○○○○○○○	000	
Spin eff	ects - photo	production		

 $A_{LL}(K_{LL})\dots$ correlation of the helicities of the photon and incoming (outgoing) nucleon

 \rightarrow characteristic signature for dominance of twist-3 (like $\sigma_T \gg \sigma_L$ in DVMP)

 $A_{LL}(K_{LL})$ for π^0 photoproduction on neutron and η photoproduction

- LO: [Meskauskas, Müller '11] ($\chi^2/n_{\rm d.o.f} \approx 2$)
- NLO: [Lautenschlager, Müller, Schäfer '13] (normalization of experimental DVMP datasets treated as fitting parameters)

small-x global fits to HERA collider data

- LO: [Meskauskas, Müller '11] $(\chi^2/n_{
 m d.o.f}pprox 2)$
- NLO: [Lautenschlager, Müller, Schäfer '13] (normalization of experimental DVMP datasets treated as fitting parameters)

Global NLO fits (DIS+DVCS+DVV_LP)

App.3

App.2

- hard scattering amplitude corrected [Duplančić, Müller, P-K. '17]
- new NLO fit using GEPARD software: $\chi^2/n_{\rm d.o.f}=$ 254.3/231

[preliminary K. Kumerički at Transversity 2022]

NLO fits

000

App.1

- hard scattering amplitude corrected [Duplančić, Müller, P-K. '17]
- new NLO fit using GEPARD software: $\chi^2/n_{
 m d.o.f}=$ 254.3/231

[preliminary K. Kumerički at Transversity 2022]

- hard scattering amplitude corrected [Duplančić, Müller, P-K. '17]
- new NLO fit using GEPARD software: $\chi^2/n_{\rm d.o.f} = 254.3/231$

- hard scattering amplitude corrected [Duplančić, Müller, P-K. '17]
- new NLO fit using GEPARD software: $\chi^2/n_{
 m d.o.f}=$ 254.3/231

[[]K. Kumerički at Transversity 2022]

Good statistics: For example, at JLab Hall B:

- untagged incoming $\gamma \Rightarrow$ Weizsäcker-Williams distribution
- ▶ with an expected luminosity of L = 100 nb⁻¹s⁻¹, for 100 days of run:

-
$$ho_L^0$$
 (on p) : $pprox$ 2.4 $imes$ 10⁵

-
$$ho_{T}^{0}$$
 (on p) : $pprox$ 4.2 $imes$ 10⁴ (Chiral-odd)

-
$$ho_L^+:pprox 1.4 imes 10^5$$

- ρ_T^+ : $\approx 6.7 \times 10^4$ (Chiral-odd)

-
$$\pi^+:pprox 1.8 imes 10^5$$

App.1	App.2	App.3	NLO fits	$ \substack{\gamma M \\ \circ \bullet \circ \circ \circ }$
00000	00000	000000000000000	000	
Prospects at experiments Counting rates: COMPASS				

At COMPASS:

- $\blacktriangleright\,$ Taking a luminosity of $\mathcal{L}=0.1~{\rm nb}^{-1} \textit{s}^{-1}$, and 300 days of run,
 - ho_L^0 (on p) : pprox 1.2 imes 10 3
 - $ho_{\mathcal{T}}^0$ (on ho) : pprox 1.5 imes 10² (Chiral-odd)
 - $ho_L^+:pprox 7.4 imes 10^2$
 - ho_{T}^{+} : pprox 2.6 imes 10² (Chiral-odd)
 - $\pi^+:pprox$ 4.5 imes 10 2
- Lower numbers due to low luminosity (factor of 10³ less than JLab!)

00000	00000	000000000000000000000000000000000000000	000	00000
	Prospects at exp Counting rates: EIC	eriments		

At the future EIC, with an expected integrated luminosity of 10 fb⁻¹ (about 100 times smaller than JLab):

–
$$ho_L^0$$
 (on p) : $pprox$ 2.4 $imes$ 10⁴

- ho_T^0 (on ho) : pprox 2.4 imes 10³ (Chiral-odd)

-
$$\rho_L^+:\approx 1.5\times 10^4$$

-
$$ho_T^+$$
 : $pprox$ 4.2 $imes$ 10³ (Chiral-odd)

-
$$\pi^+:pprox 1.3 imes 10^4$$

► Small ξ study: 160 < $S_{\gamma N}$ < 20000 (5 · 10⁻⁵ < ξ < 5 · 10⁻³):

–
$$ho_L^0$$
 (on p) : $pprox 2.3 imes 10^3$

 $- \rho_T^0$ (on p) : ≈ 6.5 (Chiral-odd) (tiny)

-
$$\rho_L^+:\approx 1.8 imes 10^3$$

- $\pi^+:pprox 1.0 imes 10^3$

App.1 00000	App.2 00000	App.3 000000000000000	NLO fits 000	γM 00000
F	Prospects at expo .HC at UPC	eriments		
	For p-Pb UPCs a	t LHC (integrated luminos	ity of 1200 nb^{-1}):	
	► With future	data from runs 3 and 4,		
	$- ho_L^0 : \approx 1.$	$6 imes 10^4$		
	$- ho_T^0$: $pprox 1$	$.7 imes 10^3$ (Chiral-odd)		
	- $ ho_L^+$: $pprox 1$	$.0 imes10^4$		
	$- \rho_T^+$: ≈ 2	$.9 imes 10^3$ (Chiral-odd)		

- $\pi^+:\approx 9.0\times 10^3$

• With $160 < S_{\gamma N} < 20000$, probing $5 \cdot 10^{-5} < \xi < 5 \cdot 10^{-3}$:

$$-
ho_L^0$$
 : $pprox 1.6 imes 10^3$

- ρ_L^+ : $\approx 1.2 \times 10^3$
- π^+ : $\approx 6.5 \times 10^2$

- Photon flux enhanced by a factor of Z², but drops rapidly with S_{γN} ⇒ Low luminosity not compensated by larger photon flux.
- LHC great for high energy, but JLab better in terms of luminosity.
- Still, LHC gives us access to the small ξ region of GPDs!