QCD opportunities by heavy-flavour production in fixed-target experiments at the LHC

Maria Vittoria Garzelli

with input from S. Alekhin, M. Benzke, C. Hadjidakis, B. Kniehl, S. Kulagin, S.-O. Moch, O. Zenaiev and PROSA collaboration

Hamburg Universität, II Institut für Theoretische Physik

Meeting of the Forschergruppe For2926 Universität Regensburg, Regensburg, 16 - 17 February, 2023

Light flavour vs. heavy flavour

 \ast Light-flavoured hadrons include only light quarks as valence quarks in their composition.

* m_u , m_d , $m_s << \Lambda_{QCD}$ $\Rightarrow \alpha_S(m_u)$, $\alpha_S(m_d)$, $\alpha_S(m_s) > 1$ \Rightarrow Light hadron production at low p_T is dominated by non-perturbative QCD effects.

 $\ast\,$ Heavy-flavoured hadrons include at least one heavy-quark as valence quark in their composition.

* m_c , $m_b >> \Lambda_{QCD}$

 $\Rightarrow \alpha_s(m_c), \ \alpha_s(m_b), \ << 1$

 \Rightarrow At a scale $\sim m_Q$, QCD is still perturbative. At the LHC, charm is produced perturbatively even at low p_T , but non-perturbative effects at such low scales may also play important roles.

* m_c , $m_b << LHC$ energies

 \Rightarrow Multiscale issues, appearence of large logs.

Heavy-quark production in hadronic collisions

- * Heavy quarks are mostly produced in pairs in the Standard Model. This process is dominated by QCD effects.
- * Collinear factorization theorem is assumed: $d\sigma(N_1N_2 \rightarrow Q\bar{Q} + X) = \sum_{ab} PDF_a^{N_1}(x_a, \mu_F)PDF_b^{N_2}(x_b, \mu_F) \otimes d\hat{\sigma}_{ab \rightarrow Q\bar{Q}X'}(x_a, x_b, \mu_F, \mu_R, m_Q) + \text{P.C.}$

 $\mathrm{d}\hat{\sigma}$: differential perturbative partonic hard-scattering cross-section,

 μ_F , μ_R reabsorb IR and UV divergences,

PDFs: perturbative evolution with factorization scale μ_F , non-perturbative dependence on $x = p^+/P_N^+$.

QCD uncertainties

- * μ_F and μ_R choice: no univocal recipe.
- * Approximate knowledge of heavy-quark mass values m_Q (SM input parameters).
- * Choice of the Flavour Number Scheme (several possibilities).
- * PDF $(+ \alpha_{S}(M_{Z}))$ fits to experimental data.

Total $\sigma(pp ightarrow c ar{c}(+X))$ at LO, NLO, NNLO QCD

 $(E_{lab} \simeq 400 \text{ GeV} \sim E_{cm} = 27 \text{ GeV})$ $(E_{lab} \simeq 7000 \text{ GeV} \sim E_{cm} = 114.6 \text{ GeV})$ $(E_{lab} = 10^6 \text{ GeV} \sim E_{cm} = 1.37 \text{ TeV})$ $(E_{lab} = 10^8 \text{ GeV} \sim E_{cm} = 13.7 \text{ TeV})$ $(E_{lab} = 10^{10} \text{ GeV} \sim E_{cm} = 137 \text{ TeV})$

data from fixed target exp (E769, LEBC-EHS, LEBC-MPS, HERA-B) + colliders (STAR, PHENIX, ALICE, ATLAS, LHCb) are extrapolated from fiducial measurements.

- * LHC fixed-target program make measurements in the region between old fixed-target experiments and RHIC (not yet covered).
- * Sizable QCD uncertainty bands not included in the figure.
- * Leading order is not accurate enough for this process!

M.V. Garzelli et al.

From parton production at NLO to heavy-flavour hadrons

Different descriptions of the transition are possible:

1) fixed-order QCD + Parton Shower + hadronization:

match the fixed-order calculation with a parton-shower algorithm (resummation of part of the logarithms related to soft and collinear emissions on top of the hard-scattering process), followed by hadronization (phenomenological model).

Advantage: fully exclusive event generation, correlations between final state particles/hadrons are kept.

Problem: accuracy not exactly known, differently from the case of conventional analytical resummation procedures to all orders in P. T.

2) <u>Convolution of partonic cross-sections with Fragmentation Functions</u> (see the following).

Both methods 1) and 2) are used in the following.

NLO+PS differential σ vs experimental data for differential cross-sections for $pp \rightarrow D^{\pm} + X$ at LHCb at 5 TeV

* agreement theory/experiment within large (μ_R, μ_F) uncertainty bands. * theory uncertainties much larger than the experimental ones.

M.V. Garzelli et al

Coverage of heavy-flavour data for PDF fits

- * LHCb open-charm data (2 < y < 4.5)
- * ATLAS (and CMS) open-charm data (|y| < 2.5)
- * CDF open-charm data (|y| < 1)
- * ALICE open-charm data (|y| < 0.5)
- + further open-bottom data

Different experiments span (Q^2, x) regions partially overlapping: good for verifying their compatibility and for cross-checking their theoretical description.

Description of similar quality for all these data so far.

These data are very useful for constraining gluon PDFs at small X: see e.g. various versions of PROSA PDFs and NNPDF+LHCb PDFs. M.V. Garzelli et al. heavy-flavour at LHC fixed-target February 16th - 17th, 2023

gluon PDF: comparison between different PDF fits including LHCb *D*-meson production data

 * LHCb *D*-meson data (collider modality) constrain PDFs at small x.
 * Compatibility of indipendent PDF fits including *D*-meson data: PROSA central gluon lies in the interval between central NNPDF3.1+LHCb NLO and NNPDF3.1+LHCb NLO+(small-x)NLL.

M.V. Garzelli et al

Fixed-target experiments at the LHC: increased large x

coverage and sensitivity to nuclear matter effects

from K. Mattioli (LHCb), talk at QCD@LHC, December 2022 * LHCb-FT coverage at scale $Q^2 \sim 4 \text{ GeV}^2$:

 $2 \cdot 10^{-4} \lesssim x \lesssim 4 \cdot 10^{-1} \Rightarrow$ gluon, sea quarks and intrinsic charm * Light targets: probe NM effects in *pA* collisions in *A* range different from Pb * Cold and Hot Nuclear Matter effects (at small *x*) can be compared by using *p* or Pb beams impinging on the nuclear targets (He, Ne, Ar,).

M.V. Garzelli et al

Fixed-target experiments at the LHC: y* coverage

- * LHCb SMOG (Run 2): center-of-mass rapidity of heavy-flavour: $-2.29 < y^* < 0$, corresponding to rapidity 2.0 < y < 4.29
- * LHCb SMOG2 (Run 3): -2.8 < y* < 0.2
- * ALICE FT extension (Run 4): $-3.6 < y^* < -2.6$

from FTP4LHC community support document for FT program at LHC

* Different experiments span y* regions partially overlapping: good for verifying their compatibility and for cross-checking their results.
* But different materials:

 H_2 , D_2 , Ar, Kr, Xe, He, Ne, N₂, O_2 (SMOG2) vs. C, Ti, W (ALICE-FT)

- * ALICE more backward than LHCb \Rightarrow larger target $\textbf{\textit{x}}$
- * Most recent results on D^0 production at $\sqrt{s_{NN}} = 68.5$ GeV from LHCb

M.V. Garzelli et al

PROSA (NLO QCD + phenomenological FF) computation of D⁰-meson production w.r.t. LHCb fixed-target data on pHe in [arXiv:1810.07907]

The same NLO + phenomenological FF setup capable to reproduce LHCb $pp \rightarrow D_0 + X$ data at $\sqrt{s} = 5,7$ and 13 TeV, fails to reproduce data at LHC in fixed-target mode \rightarrow inadequacy/non univ. of the FF approach

M.V. Garzelli et a

PROSA (NLO QCD + phenomenological FF) computation of D⁰-meson production w.r.t. LHCb fixed-target data on pHe in [arXiv:1810.07907]

* Scale variation uncertainties are not enough to reconcile theory with data on p_{T,D_0} distribution.

 $* y_{D_0}$ distribution well in agreement with exp. data, within scale uncer.

M.V. Garzelli et al

heavy-flavour at LHC fixed-target

February 16th - 17th, 2023 12 / 33

PROSA NLO+PS computation of *D*⁰-meson production w.r.t. LHCb fixed-target data on pHe in [arXiv:1810.07907]

- * Total cross-sections per nucleon for $D_0 + \overline{D}_0$ after LHCb rapidity cuts: Theory: $\sigma = 76.1 + 116$ (scale) - 35 (scale) microbarn/n LHCb: $\sigma = 80.8 \pm 2.4 \pm 6.3$ microbarn/n
- * Total cross-sections per nucleon for $D_0 + \bar{D}_0$ inclusive: Theory: $\sigma = 148.7 + 229$ (scale) - 83 (scale) microbarn/n LHCb: $\sigma = 156.0 \pm 13$ microbarn/n

PROSA NLO+PS computation of *D*⁰-meson production w.r.t. LHCb fixed-target data on pHe

p + He ---> D0 + X, LHCb cuts, E_{cm} = 86.6 GeV

* *pA* effects might broaden the distribution

* pp central theory predictions slightly underestimate the high p_T tails, but still compatible with data considering scale uncertainties

M.V. Garzelli et a

heavy-flavour at LHC fixed-target

February 16th - 17th, 2023 14 / 33

PROSA NLO+PS computation of *D*⁰-meson production w.r.t. LHCb fixed-target data on pAr

p + Ar ---> D0 + X, LHCb cuts, E_{cm} = 110.4 GeV

* exp. (p+He) and (p+Ar) data similarly enhanced with respect to theory at large p_T : final state effects ?

M.V. Garzelli et a

heavy-flavour at LHC fixed-target

February 16th - 17th, 2023 15 / 33

PROSA NLO+PS computation of *D*⁰-meson production w.r.t. LHCb fixed-target data on pHe and pAr

- * Big scale uncertainties.
- * Before discussing intrinsic charm, one has to disentangle *pA* effects: they can impact on the shapes of the distributions.

M.V. Garzelli et al

PROSA NLO+PS computation of *D*⁰-meson production w.r.t. LHCb fixed-target data on pNe in [arXiv:2211.11633]

- * Total cross-sections per nucleon for $D_0 + \overline{D}_0$ after LHCb rapidity cuts: Theory: $\sigma = 53 + 81$ (scale) - 24 (scale) microbarn/n LHCb: $\sigma = 48.2 \pm 0.3 \pm 4.3$ microbarn/n
- * Total cross-sections per nucleon for $D_0 + \overline{D}_0$ inclusive: Theory: $\sigma = 109 + 167$ (scale) - 50 (scale) microbarn/n LHCb: $\sigma = 97.6 \pm 0.7 \pm 9.1$ microbarn/n

PROSA NLO+PS computation of *D*⁰-meson production w.r.t. LHCb fixed-target data on pNe

- * *pA* effects might broaden the distribution
- * pp central theory predictions slightly underestimate the high p_T tails, but still compatible with data considering scale uncertainties.
- * No need for IC to explain the high p_T tail.

PROSA NLO+PS computation of *D*⁰-meson production w.r.t. LHCb fixed-target data on pNe

- * pp central theory predictions slightly overestimate the high y tails, but still compatible with data considering scale uncertainties.
- \ast No need for IC to explain this distribution as well.

PROSA NLO+PS computation of D^0 -meson production in pNe w.r.t. GM-VFNS NLO + FF

- * GM-VFNS predictions compatible with NLO+PS predictions, if one accounts for the scale uncertainty bands of both.
- \ast GM-VFNS predictions however not in agreement with the LHCb data.
- * GM-VFNS y_{D^0} -distribution spoiled by the low p_{T,D^0} behaviour.

PROSA NLO+PS computation of *D*⁰-meson production w.r.t. LHCb fixed-target data on pNe

- * $D^0 \overline{D}^0$ pruduction asymmetry as a function of p_T from p_P predictions compatible with data, considering uncertainty on the latter.
- * Most theory uncertainties cancel in ratios.
- \ast Reduction in data uncorrelated (systematical + statistical) uncertainty is needed for more conclusive remarks.

M.V. Garzelli et al

PROSA NLO+PS computation of *D*⁰-meson production w.r.t. LHCb fixed-target data on pNe

* $D^0 - \overline{D}^0$ pruduction asymmetry as a function of y from pp predictions compatible with data only for central rapidity $(-1 < y^* < 0)$, considering uncertainty on the latter.

* for $-2.5 < y^* < -1$, theory predictions not compatible with data.

* Theory predictions lead to a very negative asymmetry only at rapidities y < -3 (effect of recombination with p remnant: $\overline{D}^0 = \overline{c}u$).

M.V. Garzelli et al

PROSA NLO+PS computation of *D*⁰-meson production in fixed-target experiments at HL-LHC

* Total cross-sections per nucleon for $D_0 + \overline{D}_0$ after LHCb-SMOG2 rapidity cuts:

Theory: $\sigma = 114 + 186$ (scale) - 52 (scale) microbarn/n

* Total cross-sections per nucleon for $D_0 + \overline{D}_0$ after ALICE-FT rapidity cuts:

Theory: $\sigma = 3.1 + 5.3$ (scale) - 1.5 (scale) microbarn/n

* Total $c\bar{c}$ cross-section - no cuts : Theory: $\sigma = 187 + 288$ (scale) - 86 (scale) microbarn/n

x₂ range probed at ALICE-FT and LHCb-SMOG2 (HL-LHC)

* ALICE-FT x_2 distribution peaked in the [0.2 - 0.25] bin * LHCb-SMOG2 x_2 distribution peaked in the [0.1 - 0.15] bin

PROSA 2019 vs. ABMP16 PDFs at large x

* PROSA 2019 and ABMP16 g(x) turns out to be compatible among each other, notwithstanding being constrained by different data sets.

* ABMP16 uncertainties much smaller than PROSA 2019 ones.

PROSA 2019 vs. ABMP16 PDFs at large x

* PROSA 2019 and ABMP16 $u_v(x)$ turns out to be compatible among each other (effect of DIS data in both fits).

* Large discrepancies in case of $d_v(x)$ in case of $2 \cdot 10^{-2} < x < 10^{-1}$: ABMP16 are more reliable, including DY data (inclusive and asymmetries), sensitive to light flavour separation. (x_2, x_1) coverage of DY at different experiments sensitive to $\bar{d}(x)/\bar{u}(x)$ and $\bar{d}(x) - \bar{u}(x)$

February 16th - 17th, 2023 27 / 33

ABMP16 comparison with recent SeaQuest data

* Data not included in the fit, but well reproduced by the latter. * Confirm $\overline{d}(x)/\overline{u}(x) > 1$ at large x.

Comparison of global PDFs with recent Seaquest data

* NNPDF4.0 agrees with them, even because it includes them in the fit.

* (Too) large CT18 bands: these data can be used to constrain them.

M.V. Garzelli et al

Performances of the PROSA QCD computation of *D*-meson production w.r.t. LEBC-EHS exp. data

Fixed target experiment with $E_{p, lab} = 400 \text{ GeV}$.

- * Measure relatively large $x_F = p_{z,D}/p_{z,D}^{max}$ (up to $x_F \sim 0.6$) and p_T^2 .
- * Sizable QCD uncertainty band not included in the plot.

Performances of the PROSA QCD computation of *D*-meson production w.r.t. LEBC-MPS exp. data

* Fixed target experiment with $E_{lab} = 800 \text{ GeV}$.

- * Measure relatively large x_F (up to $x_F \sim 0.4$).
- * Sizable QCD uncertainty band not included in the plot.

Another challenge: comparison with data on charmonium production in *p*Ne at $\sqrt{s_{NN}} = 68.5$ GeV at LHCb-SMOG

from LHCb collaboration, [arxiv:2211.11645]

* Can NRQCD reproduce the experimental $p_{T,J/\psi}$ distribution at least at large enough $p_{T,J/\psi}$?

Work in progress with M. Butenschoen

Conclusions

* LHC fixed-target program has produced first high-quality data on D^0 production, exploring a $\sqrt{s_{NN}}$ region in between old fixed-target experiments and RHIC.

* LHCb has produced first high-quality data, but reduction of statistical and especially systematical uncertainties is important for using them for making strong conclusions. Important to add ALICE-FT experiment for enlarging y and A coverage and for cross-checking LHCb-FT results.

* No evident need for intrinsic charm to explain present data, but pA effects have also to be understood.

* Data on $(D^0 - \overline{D}^0)$ asymmetries particularly interesting. Asymmetry as a function of y can be used to constrain soft physics (hadronization including recombination with beam remnants) in SMC codes.

* Target fragmentation region: standard FF picture does not work for emissions anticollinear w.r.t. to the incoming beam. Fracture functions ? New factorization theorem ?