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Motivation

TMD factorization: unpolarized structure functions expressed as

W̃ (q⊥) =

∫
d2z⊥
(2π)2

e−iz⊥·q⊥W (z⊥) =

∫ ∞

0

dz⊥
2π

J0(q⊥z⊥)z⊥W (z⊥) . (1)

W (z⊥) – product of TMDs and FFs.
Polarized structure functions → also integrals involving J1, J2.

Adaptative quadrature methods use different grid points in z⊥, depending
on q⊥ =⇒ if computation of W (z) becomes costly, then computation of
every point W̃ (q⊥) becomes proportionally longer.

=⇒ Find a method that can use a fixed grid in a wide range of q⊥ !
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Levin’s method: the general idea

D. Levin Fast integration of rapidly oscillatory functions,
J. of Computational and Applied Mathematics 67 (1996) 95-101

Rewrite the integral as ∫ z1

z0

ω⃗ · g⃗ dz , (2)

with the quickly oscillating part ω⃗ such that

d

dz
ω⃗ = AT ω⃗, (3)

e.g.

ω⃗(z) =
[
Jν(qz), Jν+1(qz)

]T
, g⃗(z) =

[
f (z), 0

]T
.
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Levin’s method: the general idea

Find a function h⃗(z) such that( d

dz
+ A

)
h⃗ = g⃗ , (4)

then
d

dz

(
h⃗ · ω⃗

)
=
( d
dz

h⃗
)
· ω⃗ + h⃗ ·

(
AT ω⃗

)
= g⃗ · ω⃗. (5)

The integral can be easily computed:∫ z1

z0

ω⃗ · g⃗ dz = h⃗(z1) · ω⃗(z1)− h⃗(z0) · ω⃗(z0). (6)
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Levin’s method: the general idea

One can choose

ω⃗(z) =

 Jν
(
qz
)

Jν+1

(
qz
)
 , g⃗(z) =

f (z)
0

 . (7)

In that case:

A =

ν/z −q

q −(ν + 1)/z

 . (8)

Side remark: integral with Jν+1 → just use g⃗ =
[
0, f (z)

]T
.
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Levin’s method: application to Hankel transform

Obtained system of differential equations:(
d

dz
+

[
ν/z −q

q −(ν + 1)/z

])[
h1(z)

h2(z)

]
=

[
f (z)

0

]
. (9)

✗ Singularity at z = 0 !
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Levin’s method: singularity at z = 0

Make a different splitting of the oscillatory and non-oscillatory part of the
integral: ∫ ∞

0
Jν(qz)f (z) dz =

∫ ∞

0

(
z−νJν(qz)

)
zν f (z) dz . (10)

Use the rescaled vector of oscillatory functions:

ω⃗2 =

 z−νJν
(
qz
)

z−νJν+1

(
qz
)
 , lim

z→0
ω⃗2(z) is finite. (11)

The resulting matrix A2 is

A2 =

0 −q

q −(2ν + 1)/z

 . (12)
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Levin’s method: singularity at z = 0

Introduce zh̃3 = h̃2, to remove the 1/z factor.
ν ≥ 1 =⇒ h̃3 is well-behaved at z = 0.

Differential equations for the rescaled functions:zν f (z) = d
dz h̃1(z)− qzh̃3,

0 = z d
dz h̃3 − 2νh̃3 + qh̃1.

(13)

Remark: for larger z , it is better to use z
z+1 h̃3 = h̃2

=⇒ longer formulas, but the method is the same.

In fact, one takes also z/(1 + z) instead of z in ω2.
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The case 0 ≤ ν < 1

Can integrate by parts:

∫ z1

z0

Jν(qz)f (z) dz =

1

q
Jν+1(qz)f (z)

∣∣∣z1
z0

− 1

q

∫ z1

z0

zν
( d

dz

(
zf (z)

)
− (ν + 2)f (z)

)
z−(ν+1)Jν+1(qz). (14)
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Infinite interval

In general, one can make a variable transformation:∫ ∞

0
f (z)Jν(qz) dz =

∫ 1

−1

(dz
du

)
f
(
z(u)

)
Jν
(
z(u)

)
du. (15)

The resulting equation for h̃(u) reads:f
(
z(u)

)
0

 =

((du
dz

) d

du
+ A

)h̃1(u)
h̃2(u)

 (16)
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Chebyshev pseudospectral method

p1, p3 - Chebyshev polynomials of order N − 1 approximating h̃1,3.

uj = cos
( jπ
N

)
, j ∈ {0, ...,N − 1} interpolation points, (17)

p1,3(uj) = h̃1,3(uj), f (zj) = f
(
z(uj)

)
, (18)

d

du
p(uj) =

N−1∑
k=0

Djkp(uk) ≈
d

du
h̃(uj). (19)

D - Chebyshev differentiation matrix.
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Chebyshev pseudospectral method

Find the approximate solution by discretizing the system:

Let zj = z(uj),zνj f
(
zj
)

=
(
du
dz

)∑
jk p1(uk)− qzjp3(uj),

0 = zj

(
du
dz

)∑
jk p3(uk)− 2νp3(uj) + qp1(uj).

(20)

Let:

F⃗ =
[
zν0 f (z0), ..., z

ν
N−1f (zN−1), 0, ...., 0

]T
, (21)

P⃗ =
[
p1(u0), ..., p1(uN−1), p3(u0), ..., p3(uN−1)

]T
, (22)

BP⃗ = F⃗ . (23)
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Chebyshev pseudospectral method

−→ 2N equations.

−→ Need to find appropriate variable transformation (so that one can
interpolate the integrand and the solution well on the resulting grid).

M. Diehl, R. Nagar, F. J. Tackmann, ChiliPDF: Chebyshev Interpolation
for Parton Distributions, [arXiv:2112.09703] – efficient use of Chebyshev
grids, many kinds of variable transformation implemented.
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Technical remarks

For ∼ 50 nodes the best accuracy is obtained when splitting the integral
into 2 parts:∫ ∞

0
Jν(qz)f (z) dz =

∫ z1

0
Jν(qz)f (z) dz +

∫ ∞

z1

Jν(qz)f (z) dz . (24)

qz1 smaller then the first zero of Jν =⇒ can integrate on the first
subinterval using the Clenshaw-Curtis quadrature.

larger qz1 =⇒ construct the matrix B needed to solve (20).

First, compute the LU decomposition of B.
If B is ill-conditioned (zero or small elements on diagonal), use the
singular value decomposition (SVD) of B.
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Benchmarking the precision

Compare with precision obtained using optimised Ogata quadrature:
Kang:2019ctl [arXiv:1906.05949v2].

“Toy function” used in the cited work:

W (z) =
1

z

(βz
σ2

)β2/σ2

exp
(
− zβ

σ2

)
, (25)

Q−1 = β
β2−σ2 – maximum of W → mimicks the inverse of the hard scale.
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Benchmarking the precision

W (z) including LO evolution effects at low z and various Ansaetze for
large z behavior:

W (z) = exp
(
S(µz ,Q)

)
×
[
F (z)

]2
(26)

exp
(
S(µz ,Q)

)
- Sudakov factor with z-dependent renormalization scale

µz ∝ 1/z .

F (z) - Ansatz for large-z behavior of TMD:

Gaussian behavior from Bacchetta et al., [arXiv:1703.10157],

Exponential form from Scimemi and Vladimirov, [arXiv:1706.01473].
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Benchmarking the precision
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Benchmarking the precision
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Error estimation

Estimate the error by comparing with results for grid with twice as many
points.
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Error estimation
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Summary

Need to find good grid settings (subgrid splitting, variable
transformation).

Can use the Levin’s method on a fixed grid in z-space
(independently on q!)

Much better precision for higher q.

Can handle integration on intervals different than (0,∞),
e.g. when integrating with a lower cut-off zmin..

Computation of the relevant matrix decomposition allows to quickly
compute integrals involving Jν , Jν−1 and Jν+1.
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Backup: speeding up the computation

n-point grid =⇒ a system of 2n linear equations.

The most costly part: computation of the LU (possibly also SV)
decomposition ∝ n3 operations.

Can use 3 subgrid with {16, 16, 16} points instead of {16, 32}.

−→ ∼ 40% faster computation, but slightly worse accuracy.
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Backup: 2 vs 3 subgrids
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Backup: LU decomposition of the matrix B

PB = LU (27)

L =


1 0 0 ... 0
l1,2 1 0 ... 0

...

l1,n−1 l2,n−1 ...
. . . 0

l1,n l2,n ... ln−1,n 1

 U =


u1,1 u2,1 u3,1 ... un,1
0 u2,2 u3,2 ... un,2

...

0 0 ...
. . . un,n−1

0 0 ... 0 un,n


(28)

P - permutation matrix.

Can solve Bh⃗ = g⃗ using the backward substitution method.
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Backup: SV decomposition of the matrix B

B = U
[
diag(wj)

]
V T , (29)

U,V - orthogonal matrices, wj - singular values.

B−1 = V
[
diag(1/wj)

]
UT . (30)

wj = 0 (or |wj | < ε - arbitrarily chosen small value) → replace 1/wj by 0.
Solution h′ obtained this way minimizes the error∑

j

∣∣∣(Bh⃗′ − g⃗
)
j

∣∣∣. (31)
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Backup: zW (z) in position space
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