# Quark mass effects in double parton distributions.

a consistent treatment

February 17, 2023

M. Diehl<sup>1</sup> R. Nagar<sup>2</sup> P. Plößl<sup>1</sup>

<sup>1</sup>Deutsches Elektronen-Synchrotron DESY <sup>2</sup>Dipartimento di Fisica "Giuseppe Occhialini", Università degli Studi di Milano-Bicocca



# Part I

# What is double parton scattering?

#### **Double Parton scattering.**

DESY.

# What is double parton scattering?

Double parton scattering (DPS) describes two individual hard interactions in a single hadron-hadron collision:



- Already observed at previous colliders at CERN and at the Tevatron.
- More data available from the LHC and more to come from HL-LHC.

DPS is naturally associated with the situation where the final state can be separated into two subsets with individual hard scales.

#### **Double Parton scattering.**



When is DPS relevant and why is it interesting?

- Whilst generally suppressed compared to single parton scattering (SPS), DPS may be enhanced for final states with small transverse momenta or large separation in rapidity.
- When production of final states via SPS involves small coupling constants or higher orders, DPS may give leading contributions (like-sign W production):



 $\longrightarrow$  background to the search for new physics with like-sign lepton pairs.

- ► Relative importance of DPS increases with collision energy ( $\sigma_{\text{DPS}} \sim \text{PDF}^4$  vs.  $\sigma_{\text{SPS}} \sim \text{PDF}^2$ ).
- DPS gives access to information about hadron structure not accessible in other processes: spatial, spin, and colour correlations between two partons.

#### Describing DPS.



# Factorization for DPS.

Pioneering work already in the 80's:

LO factorisation formula based on a parton model picture [Politzer, 1980; Paver and Treleani, 1982; Mekhfi, 1985]

$$\sigma_{pp \to A,B} = \hat{\sigma}_{ik \to A}(x_1 \bar{x}_1 s) \,\hat{\sigma}_{jl \to B}(x_2 \bar{x}_2 s) \\ \times \int d^2 \boldsymbol{y} \, F_{ij}(x_1, x_2, \boldsymbol{y}; Q_1^2, Q_2^2) \, F_{kl}(\bar{x}_1, \bar{x}_2, \boldsymbol{y}; Q_1^2, Q_2^2)$$

Increasing interest in DPS in the LHC era:

- Many experimental data already from previous colliders at CERN and Tevatron, new measurements from LHC with more to come in the HL phase.
- Progress also from theory:
  - Systematic QCD description. [Blok et al., 2011; Diehl et al., 2011; Manohar and Waalewijn, 2012; Ryskin and Snigirev, 2012]
  - Factorization proof for double DY. [Diehl, Gaunt, PP, Schäfer, 2015; Diehl and Nagar, 2019]
  - ▶ Disentangling SPS and DPS. [Gaunt and Stirling, 2011; Diehl, Gaunt and Schönwald, 2017]

# Part II

# Small distance DPDs and quark mass effects.

## Perturbative splitting in DPDs.

In the limit of small distance y the leading contribution to a DPD is due to the perturbative splitting of one parton into two and can be calculated in perturbation theory:

$$F_{a_1 a_2}(x_i, y, \mu) \stackrel{\mathbf{y} \to 0}{=} \frac{1}{\pi y^2} \left[ V_{a_1 a_2, a_0}(y, \mu) \underset{12}{\otimes} f_{a_0}(\mu) \right] (x_i)$$

At LO the convolution reduces to a simple product:

$$F_{a_1a_2}^{(1)}(x_i, y, \mu) \stackrel{\boldsymbol{y} \to 0}{=} \frac{a_s}{\pi y^2} V_{a_1a_2, a_0}^{(1)}\left(\frac{x_1}{x_1 + x_2}\right) \frac{f_{a_0}(x_1 + x_2\mu)}{x_1 + x_2}$$

with

$$V_{gg,g}^{(1)}(z) = 2 C_A \left( \frac{\bar{z}}{z} + \frac{z}{\bar{z}} + z\bar{z} \right)$$

FOR2926 Meeting Regensburg

17/02/2023







## Perturbative splitting in DPDs.

In the limit of small distance y the leading contribution to a DPD is due to the perturbative splitting of one parton into two and can be calculated in perturbation theory:

$$F_{a_1 a_2}(x_i, y, \mu) \stackrel{\boldsymbol{y} \to 0}{=} \frac{1}{\pi y^2} \left[ V_{a_1 a_2, a_0}(y, \mu) \underset{12}{\otimes} f_{a_0}(\mu) \right] (x_i)$$

formally OPE of  $\mathcal{O}(y,z_1)\mathcal{O}(0,z_2) \text{ for } y \to 0$ 

At LO the convolution reduces to a simple product:

$$F_{a_1a_2}^{(1)}(x_i, y, \mu) \stackrel{\boldsymbol{y} \to 0}{=} \frac{a_s}{\pi y^2} V_{a_1a_2, a_0}^{(1)}\left(\frac{x_1}{x_1 + x_2}\right) \frac{f_{a_0}(x_1 + x_2\mu)}{x_1 + x_2}$$

with

$$V_{gg,g}^{(1)}(z) = 2 C_A \left( \frac{\bar{z}}{z} + \frac{z}{\bar{z}} + z\bar{z} \right)$$



## Perturbative splitting in DPDs.

In the limit of small distance y the leading contribution to a DPD is due to the perturbative splitting of one parton into two and can be calculated in perturbation theory:

$$F_{a_1a_2}(x_i, y, \mu) \stackrel{\boldsymbol{y} \to 0}{=} \frac{1}{\pi y^2} \begin{bmatrix} V_{a_1a_2, a_0}(y, \mu) \underset{12}{\otimes} f_{a_0}(\mu) \end{bmatrix} (x_i) \qquad \qquad \begin{array}{c} \text{formally OPE of} \\ \mathcal{O}(y, z_1)\mathcal{O}(0, z_2) \text{ for } y \to 0 \end{bmatrix}$$

At LO the convolution reduces to a simple product:

$$F_{a_{1}a_{2}}^{(1)}(x_{i}, y, \mu) \stackrel{\boldsymbol{y} \to 0}{=} \frac{a_{s}}{\pi y^{2}} V_{a_{1}a_{2}, a_{0}}^{(1)}\left(\frac{x_{1}}{x_{1} + x_{2}}\right) \frac{f_{a_{0}}(x_{1} + x_{2}\mu)}{x_{1} + x_{2}} \exp\left(-\frac{y^{2}}{4h_{a_{1}a_{2}}}\right) \quad \text{Gaussian damping for numerical studies}$$

with

$$V_{gg,g}^{(1)}(z) = 2 C_A \left(\frac{\bar{z}}{z} + \frac{z}{\bar{z}} + z\bar{z}\right)$$

FOR2926 Meeting Regensburg



## Perturbative splitting in DPDs.

In the limit of small distance y the leading contribution to a DPD is due to the perturbative splitting of one parton into two and can be calculated in perturbation theory:

$$F_{a_1a_2}(x_i, y, \mu) \stackrel{\boldsymbol{y} \to 0}{=} \frac{1}{\pi y^2} \begin{bmatrix} V_{a_1a_2, a_0}(y, \mu) \underset{12}{\otimes} f_{a_0}(\mu) \end{bmatrix} (x_i) \qquad \qquad \begin{array}{c} \text{formally OPE of} \\ \mathcal{O}(y, z_1)\mathcal{O}(0, z_2) \text{ for } y \to 0 \end{bmatrix}$$

At LO the convolution reduces to a simple product:

$$F_{a_{1}a_{2}}^{(1)}(x_{i}, y, \mu) \stackrel{\mathbf{y} \to 0}{=} \frac{a_{s}}{\pi y^{2}} V_{a_{1}a_{2}, a_{0}}^{(1)}\left(\frac{x_{1}}{x_{1} + x_{2}}\right) \frac{f_{a_{0}}(x_{1} + x_{2}\mu)}{x_{1} + x_{2}} \exp\left(-\frac{y^{2}}{4h_{a_{1}a_{2}}}\right) \quad \text{Gaussian damping for numerical studies}$$

with

$$V_{q\bar{q},g}^{(1)}(z) = T_F \left( z^2 + \bar{z}^2 \right)$$



## Perturbative splitting in DPDs.

In the limit of small distance y the leading contribution to a DPD is due to the perturbative splitting of one parton into two and can be calculated in perturbation theory:

$$F_{a_1a_2}(x_i, y, \mu) \stackrel{\boldsymbol{y} \to 0}{=} \frac{1}{\pi y^2} \begin{bmatrix} V_{a_1a_2, a_0}(y, \mu) \underset{12}{\otimes} f_{a_0}(\mu) \end{bmatrix} (x_i) \qquad \qquad \begin{array}{c} \text{formally OPE of} \\ \mathcal{O}(y, z_1)\mathcal{O}(0, z_2) \text{ for } y \to 0 \end{bmatrix}$$

At LO the convolution reduces to a simple product:

$$F_{a_1a_2}^{(1)}(x_i, y, \mu) \stackrel{\mathbf{y} \to 0}{=} \frac{a_s}{\pi y^2} V_{a_1a_2, a_0}^{(1)}\left(\frac{x_1}{x_1 + x_2}\right) \frac{f_{a_0}(x_1 + x_2\mu)}{x_1 + x_2} \exp\left(-\frac{y^2}{4h_{a_1a_2}}\right) \quad \text{Gaussian damping for numerical studies}$$

with

$$V_{qg,q}^{(1)}(z) = C_F \, \frac{1+z}{\bar{z}}$$





The "splitting scale".

At which scale  $\mu_{\rm split}$  should the splitting be evaluated?

The natural scale of the splitting is set by the interparton distance y of the observed partons:

$$\mu_{\rm split}(y) \sim \frac{1}{y}$$

In order to avoid evaluation of the splitting at non-perturbative scales for large y define:

$$\mu_{\rm split}(y) = \frac{b_0}{y^*(y)}$$

with

$$y^*(y) = rac{y}{\sqrt[4]{1+y^4/y_{
m max}^4}},$$

$$y_{\rm max} = \frac{b_0}{\mu_{\rm min}}$$

where  $y^*$  is adapted from  $b^*$  in TMD studies.

FOR2926 Meeting Regensburg



# Small *y* splitting and massive quarks.

What happens when the scale at which the splitting is evaluated is similar to the mass of a heavy quark?

Should the heavy quark be treated as massless, massive, or absent in the evaluation of the splitting?

Consider and compare in the following two different schemes:

purely massless scheme:

- $\blacktriangleright$  heavy quarks treated as decoupling for  $\mu_{\rm split} \lesssim m_Q$  ,
- heavy quarks treated as massless for  $\mu_{\text{split}} \gtrsim m_Q$ .
- "massive" scheme:
  - ▶ heavy quarks treated as decoupling for  $\mu_{\text{split}} \ll m_Q$ ,
  - ▶ heavy quarks treated as massive for  $\mu_{
    m split} \sim m_Q$ ,
  - heavy quarks treated as massless for  $\mu_{\text{split}} \gg m_Q$ .

 $m_O \gamma m_O$ 

 $F_{n'_F} = V_{n'_F} \otimes f_{n'_F} \checkmark$ 

Purely massless quarks.

 $F_{n'_F} = A_Q^2 \underset{1 \ge 2}{\otimes} F_{n_F}$ 

 $F_{n_F} = V_{n_F} \otimes f_{n_F}$ 

The simplest scheme to handle massive quarks is to treat them as absent below a certain scale and as massless above a certain scale.

 $\blacktriangleright \mu_y = \frac{b_0}{y}$ 

► Below  $\mu_y = \gamma m_Q$  the DPD is initialized for  $n_F$  massless flavours with a  $n_F$ flavour PDF.

 $m_O$ 



 $m_O \gamma m_O$ 

 $F_{n_F'} = V_{n_F'} \otimes f_{n_F'} \checkmark$ 

Purely massless quarks.

 $F_{n'_F} = A_Q^2 \bigotimes_{1/2} F_{n_F}$ 

The simplest scheme to handle massive quarks is to treat them as absent below a certain scale and as massless above a certain scale.

 $\blacktriangleright \mu_y = \frac{b_0}{y}$ 

► Below  $\mu_y = \gamma m_Q$  the  $n_F + 1$  DPD is obtained by flavour matching.

 $F_{n_F} = V_{n_F} \otimes f_{n_F}$ 

 $m_Q$ 



Purely massless quarks.

The simplest scheme to handle massive quarks is to treat them as absent below a certain scale and as massless above a certain scale.



Above  $\mu_y = \gamma m_Q$  the DPD is initialized for  $n_F + 1$  massless flavours with a  $n_F + 1$  flavour PDF.



### Purely massless guarks.

Consider  $n_F = 5$  LO splitting DPDs at  $\mu_1 = \mu_2 = m_{dijet} = 25 \,\text{GeV}$  initialized with the scheme shown in the previous slide:





### Purely massless quarks.

Consider  $n_F = 5$  LO splitting DPDs at  $\mu_1 = \mu_2 = m_{dijet} = 25 \text{ GeV}$  initialized with the scheme shown in the previous slide:



- At LO the gb DPD is produced by a direct splitting only for  $\mu_y > \gamma m_b$ .
- Heavy quark effects in the splitting seem to be unimportant.



DESY.

A more realistic treatment of quark mass effects.

In the splitting DPDs one can distinguish three regions of  $\mu_{\rm split}$ :

 $\mu_{\text{split}} \sim m_Q$ :

 $\mu_{\text{split}} \ll m_Q$ :



- In the splitting the heavy quarks decouple.
- n<sub>F</sub> + 1 DPDs obtained by flavour matching.



 Heavy quarks treated as massive in the splitting kernel V<sub>Q</sub>.



 Heavy quarks can be treated as massless in the splitting.

# DESY.

# Massive DPD splitting kernels.

Just like the massless  $V_{n_F}$  kernels the massive  $V_Q$  kernels can be computed in perturbation theory! At leading order the only splitting with massive quarks is  $g \to Q\bar{Q}$ , where the kernel reads:

$$V_{Q\bar{Q},g}^{(1)}(z_1, z_2, m_Q, y) = T_f (m_Q y)^2 \left[ (z_1^2 + z_2^2) K_1^2(m_Q y) + K_0^2(m_Q y) \right] \, \delta(1 - z_1 - z_2)$$

with the following limiting behaviour for small and large  $\mu_{split}$  (corresponding to large and small  $m_Q y$ , respectively):

$$\begin{split} \mu_{\text{split}} &\ll m_Q: \qquad V_{Q\bar{Q},g}^{(1)}(z,m_Q,y) \longrightarrow 0 \\ \mu_{\text{split}} \gg m_Q: \qquad V_{Q\bar{Q},g}^{(1)}(z_1,z_2,m_Q,y) \longrightarrow T_f(z_1^2 + z_2^2) \,\delta(1 - z_1 - z_2) = V_{q\bar{q},g}^{(1)}(z_1,z_2) \end{split}$$

 $\longrightarrow$  The massive kernel interpolates between the regions where the heavy quark decouples and where it can be treated as massless!

# One heavy flavour.

Consider now the initialization of a splitting DPD with one heavy flavour (where  $\alpha \ll 1$  and  $\beta \gg 1$ ):



Below  $\mu_y = \alpha m_Q$  the DPD is initialized for  $n_F$  massless flavours with a  $n_F$ flavour PDF.



One heavy flavour.

Consider now the initialization of a splitting DPD with one heavy flavour (where  $\alpha \ll 1$  and  $\beta \gg 1$ ):



► Below  $\mu_y = \alpha m_Q$  the  $n_F + 1$  DPD is obtained by flavour matching.



One heavy flavour.

Consider now the initialization of a splitting DPD with one heavy flavour (where  $\alpha \ll 1$  and  $\beta \gg 1$ ):



For α m<sub>Q</sub> < μ<sub>y</sub> < β m<sub>Q</sub> the DPD is initialized for n<sub>F</sub> massless and one massive flavours with a n<sub>F</sub> flavour PDF.



# One heavy flavour.

Consider now the initialization of a splitting DPD with one heavy flavour (where  $\alpha \ll 1$  and  $\beta \gg 1$ ):



Above  $\mu_y = \beta m_Q$  the DPD is initialized for  $n_F + 1$  massless flavours with a  $n_F + 1$  flavour PDF.



# One heavy flavour.

Consider now the initialization of a splitting DPD with one heavy flavour (where  $\alpha \ll 1$  and  $\beta \gg 1$ ):



Above  $\mu_y = \beta m_Q$  the DPD is initialized for  $n_F + 1$  massless flavours with a  $n_F + 1$  flavour PDF.

What happens for charm and bottom which have to be treated as massive simultaneously?



Two heavy flavours: charm and bottom.

Consider now the initialization of a splitting DPD with massive c and b quarks:



Below  $\mu_y = \alpha m_b$  the DPD is initialized for 3 massless and one heavy flavours with a 3 flavour PDF.



Two heavy flavours: charm and bottom.

Consider now the initialization of a splitting DPD with massive c and b quarks:



Below  $\mu_y = \alpha m_b$  the 5 flavour DPD is obtained by flavour matching.



Two heavy flavours: charm and bottom.

Consider now the initialization of a splitting DPD with massive c and b quarks:







Two heavy flavours: charm and bottom.

Consider now the initialization of a splitting DPD with massive c and b quarks:



For β m<sub>c</sub> < μ<sub>y</sub> < β m<sub>b</sub> the DPD is initialized for 4 massless and one massive flavours with a 4 flavour PDF.



Two heavy flavours: charm and bottom.

Consider now the initialization of a splitting DPD with massive c and b quarks:





Above  $\mu_y = \beta m_b$  the DPD is initialized for 5 massless flavours with a 5 flavour PDF.

Two heavy flavours: charm and bottom.

Consider now the initialization of a splitting DPD with massive c and b quarks:



Let's see how the DPDs look like in this scheme!



Above  $\mu_y = \beta m_b$  the DPD is initialized for 5 massless flavours with a 5 flavour PDF.

# Part III

# Numerical studies.

#### DPDs.

## DPDs in the massive scheme.

Consider now  $n_F = 5$  LO splitting DPDs at  $\mu_1 = \mu_2 = m_{dijet} = 25 \text{ GeV}$  for dijet production, initialized with the scheme shown in the previous slide (for different  $\alpha$  and  $\beta$ ):



 DPDs still discontinuous, but greatly improved compared to the massless scheme!

#### DPDs.

## DPDs in the massive scheme.

Consider now  $n_F = 5$  LO splitting DPDs at  $\mu_1 = \mu_2 = m_{dijet} = 25 \text{ GeV}$  for dijet production, initialized with the scheme shown in the previous slide (for different  $\alpha$  and  $\beta$ ):



 DPDs still discontinuous, but greatly improved compared to the massless scheme!

#### DPDs.

## DPDs in the massive scheme.

Consider now  $n_F = 5$  LO splitting DPDs at  $\mu_1 = \mu_2 = m_{dijet} = 25 \text{ GeV}$  for dijet production, initialized with the scheme shown in the previous slide (for different  $\alpha$  and  $\beta$ ):



- Increased discontinuity for gb at  $\mu_y = \alpha m_b$  due to direct production of  $\bar{b}b$  DPD!
- lncreased discontinuity for gb at  $\mu_y = \beta m_b$  due to more production modes in the massless case!

#### DPDs.

## DPDs in the massive scheme.

Consider now  $n_F = 5$  LO splitting DPDs at  $\mu_1 = \mu_2 = m_{dijet} = 25 \text{ GeV}$  for dijet production, initialized with the scheme shown in the previous slide (for different  $\alpha$  and  $\beta$ ):



- Increased discontinuity for gb at  $\mu_y = \alpha m_b$  due to direct production of  $\bar{b}b$  DPD!
- ► Increased discontinuity for gb at  $\mu_y = \beta m_b$  due to more production modes in the massless case!

#### DPDs.

## DPDs in the massive scheme.

Consider now  $n_F = 5$  LO splitting DPDs at  $\mu_1 = \mu_2 = m_{dijet} = 25 \text{ GeV}$  for dijet production, initialized with the scheme shown in the previous slide (for different  $\alpha$  and  $\beta$ ):





## **DPD** luminosities.

In order to study the effect of heavy quarks on DPS cross sections, consider DPD luminosities, i.e. products of DPDs integrated over y:

$$\mathcal{L}_{a_1 a_2 b_1 b_2}(x_{1a}, x_{2a}, x_{1b}, x_{2b}; \nu, \mu_1, \mu_2) = \int_{b_0/\nu} \mathrm{d}^2 \boldsymbol{y} \, F_{a_1 a_2}(x_{1a}, x_{2a}, y; \mu_1, \mu_2) F_{b_1 b_2}(x_{1b}, x_{2b}, y; \mu_1, \mu_2)$$

where the lower cut-off regulates the  $y^{-4}$  splitting singularity.

Here we include also "intrinsic" non-splitting contributions to the DPDs, modelled as:

$$F_{a_1a_2}^{\text{int}}(x_1, x_2, y; \mu_1, \mu_2) = \frac{(1 - x_1 - x_2)^2}{(1 - x_1)^2 (1 - x_2)^2} \frac{\exp\left(-\frac{y^2}{4h_{a_1a_2}}\right)}{4\pi h_{a_1a_2}} f_{a_1}(x_1, \mu_1) f_{a_2}(x_2, \mu_2)$$

In the following all possible combinations containing splitting DPDs are considered:

FOR2926 Meeting Regensburg



## **DPD** luminosities.

In order to study the effect of heavy quarks on DPS cross sections, consider DPD luminosities, i.e. products of DPDs integrated over y:

$$\mathcal{L}_{a_1 a_2 b_1 b_2}(x_{1a}, x_{2a}, x_{1b}, x_{2b}; \nu, \mu_1, \mu_2) = \int_{b_0/\nu} \mathrm{d}^2 \boldsymbol{y} \, F_{a_1 a_2}(x_{1a}, x_{2a}, y; \mu_1, \mu_2) F_{b_1 b_2}(x_{1b}, x_{2b}, y; \mu_1, \mu_2)$$

where the lower cut-off regulates the  $y^{-4}$  splitting singularity.

Here we include also "intrinsic" non-splitting contributions to the DPDs, modelled as:

$$F_{a_1a_2}^{\text{int}}(x_1, x_2, y; \mu_1, \mu_2) = \frac{(1 - x_1 - x_2)^2}{(1 - x_1)^2 (1 - x_2)^2} \frac{\exp\left(-\frac{y^2}{4h_{a_1a_2}}\right)}{4\pi h_{a_1a_2}} f_{a_1}(x_1, \mu_1) f_{a_2}(x_2, \mu_2)$$

split x split (1v1), split x int (1v2), int x split (2v1).

FOR2926 Meeting Regensburg



DPD luminosities in the massive scheme.

Consider now ratios of LO DPD luminosities for dijet production with different scheme parameters:



Jets at rapidities Y and -Y:

$$x_{1a} = \frac{m_{\text{dijet}}}{\sqrt{s}} \exp(Y)$$
$$x_{2a} = \frac{m_{\text{dijet}}}{\sqrt{s}} \exp(-Y)$$
$$x_{1b} = \frac{m_{\text{dijet}}}{\sqrt{s}} \exp(-Y)$$
$$x_{2b} = \frac{m_{\text{dijet}}}{\sqrt{s}} \exp(Y)$$



DPD luminosities in the massive scheme.

Consider now ratios of LO DPD luminosities for dijet production with different scheme parameters:



Jets at rapidities Y and -Y:

$$x_{1a} = \frac{m_{\text{dijet}}}{\sqrt{s}} \exp(Y)$$
$$x_{2a} = \frac{m_{\text{dijet}}}{\sqrt{s}} \exp(-Y)$$
$$x_{1b} = \frac{m_{\text{dijet}}}{\sqrt{s}} \exp(-Y)$$
$$x_{2b} = \frac{m_{\text{dijet}}}{\sqrt{s}} \exp(Y)$$



DPD luminosities in the massive scheme.

Consider now ratios of LO DPD luminosities for dijet production with different scheme parameters:



Jets at rapidities Y and -Y:

$$x_{1a} = \frac{m_{\text{dijet}}}{\sqrt{s}} \exp(Y)$$
$$x_{2a} = \frac{m_{\text{dijet}}}{\sqrt{s}} \exp(-Y)$$
$$x_{1b} = \frac{m_{\text{dijet}}}{\sqrt{s}} \exp(-Y)$$
$$x_{2b} = \frac{m_{\text{dijet}}}{\sqrt{s}} \exp(Y)$$



DPD luminosities in the massive scheme.

Consider now ratios of LO DPD luminosities for dijet production with different scheme parameters:



Jets at rapidities Y and -Y:

$$x_{1a} = \frac{m_{\text{dijet}}}{\sqrt{s}} \exp(Y)$$
$$x_{2a} = \frac{m_{\text{dijet}}}{\sqrt{s}} \exp(-Y)$$
$$x_{1b} = \frac{m_{\text{dijet}}}{\sqrt{s}} \exp(-Y)$$
$$x_{2b} = \frac{m_{\text{dijet}}}{\sqrt{s}} \exp(Y)$$

 $\rightarrow$  Smaller dependence of luminosities on  $\alpha$  and  $\beta$  compared to  $\gamma!$ 



DPD luminosities in the massive scheme: Scale dependence.



Note that the 1v1 luminosities contain the squared uncertainties of the splitting DPDs!



DPD luminosities in the massive scheme: Scale dependence.

Finally consider the dependence of DPD luminosities involving LO splitting DPDs on the scale  $\mu_{split}$  (varied by a factor of 2):



Note that the 1v1 luminosities contain the squared uncertainties of the splitting DPDs!



DPD luminosities in the massive scheme: Scale dependence.



 Large scale uncertainties hint at importance of higher order splitting!



DPD luminosities in the massive scheme: Scale dependence.







DPD luminosities in the massive scheme: Scale dependence.



# Part IV

# Massive NLO kernels.



Constraints for the massive NLO kernels.

For now a full calculation of the massive NLO kernels is out of reach for us (involves massive two-loop diagrams).

 $\rightarrow$  construct approximate solutions!

To this end make use of the following constraints:

- RGE dependence of the massive kernels.
- Small and large distance limits of the massive kernels.
- DPD number and momentum sum rules.

The limiting behaviour and RGE dependence are uniquely fixed by these constraints, while the DPD sum rules constrain also intermediate inter parton distances!



# RGE dependence of the massive NLO kernels.

The RGE dependence of the massive NLO kernels is completely fixed by LO perturbative ingredients:

Scale dependence of the massive NLO kernels:

$$\frac{\mathrm{d}}{\mathrm{d}\log\mu^2} V_{a_1a_2,a_0}^{Q,n_F(2)} = \sum_{b_1} P_{a_1b_1}^{n_F+1(0)} \underset{1}{\otimes} V_{b_1a_2,a_0}^{Q(1)} + \sum_{b_2} P_{a_2b_2}^{n_F+1(0)} \underset{2}{\otimes} V_{a_1b_2,a_0}^{Q(1)}$$
$$- \sum_{b_0} V_{a_1a_2,b_0}^{Q(1)} \underset{12}{\otimes} P_{b_0a_0}^{n_F(0)} + \frac{\beta_0^{n_F+1}}{2} V_{a_1a_2,a_0}^{Q(1)}$$
$$= v_{a_1a_2,a_0}^{n_F,\mathrm{RGE}}$$

where the  $V^{Q(1)}$  are the massive LO kernels and the  $P_{ab}^{n_F(0)}$  are the LO DGLAP kernels.



# Limiting behaviour of the massive NLO kernels.

For small and large interparton distances the massive kernels can be expressed in terms of convolutions of massless kernels and flavour matching kernels:

# Small distance limit:

$$V^{Q,n_F(2)}_{a_1a_2,a_0} \xrightarrow{y \to 0} \delta^{n_F}_{a_0l} V^{n_F+1(2)}_{a_1a_2,a_0} + \sum_{b_0} V^{n_F+1(1)}_{a_1a_2,b_0} \underset{12}{\otimes} A^{Q(1)}_{b_0a_0} ,$$

Large distance limit:

$$V^{Q,n_F(2)}_{a_1a_2,a_0} \stackrel{y \to \infty}{\longrightarrow} V^{n_F(2)}_{a_1a_2,a_0} + \sum_{b_1} A^{Q(1)}_{a_1b_1} \mathop{\otimes}_{1} V^{(1)}_{b_1a_2,a_0} + \sum_{b_2} A^{Q(1)}_{a_2b_2} \mathop{\otimes}_{2} V^{(1)}_{a_1b_2,a_0} + A^{Q(1)}_{\alpha} V^{(1)}_{a_1a_2,a_0}$$



Sum rules for the massive NLO kernels.

The Gaunt-Stirling DPD sum rules can be used to derive sum rules for the massive kernels:

## Momentum sum rule:

$$\begin{split} &\sum_{a_2} \int_2 X_2 \int_{y_\beta}^{y_\alpha} \mathrm{d}^2 y \, V_{a_1 a_2, a_0}^{Q, n_F(2)} = (1 - X) \, A_{a_1 a_0}^{Q(2)} \\ &+ \sum_{a_2} \int_2 X_2 \left[ U_{a_1 a_2, a_0}^{n_F(2)}(r_\alpha) - U_{a_1 a_2, a_0}^{n_F + 1(2)}(r_\beta) \right] + A_\alpha^{(1)} \sum_{a_2} \int_2 X_2 \, U_{a_1 a_2, a_0}^{(1)}(r_\alpha) \\ &+ \sum_{b_1, a_2} A_{a_1 b_1}^{Q(1)} \bigotimes_1 \left( \int_2 X_2 \, U_{b_1 a_2, a_0}^{(1)}(r_\alpha) \right) - \sum_{a_2, b_0} \left( \int_2 X_2 \, U_{a_1 a_2, b_0}^{(1)}(r_\beta) \right) \otimes \left( X A_{b_0 a_0}^{Q(1)} \right) \end{split}$$



# Sum rules for the massive NLO kernels.

The Gaunt-Stirling DPD sum rules can be used to derive sum rules for the massive kernels:

## Number sum rule:

$$\begin{split} \int_{2} \int_{y_{\beta}}^{y_{\alpha}} \mathrm{d}^{2}y \frac{1}{\pi y^{2}} V_{a_{1}a_{2v},a_{0}}^{Q,n_{F}(2)} &= \left(\delta_{a_{1}\bar{a}_{2}} - \delta_{a_{1}a_{2}} - \delta_{a_{2}\bar{a}_{0}} + \delta_{a_{2}a_{0}}\right) A_{a_{1}a_{0}}^{Q(2)} \\ &+ \int_{2} \left[ U_{a_{1}a_{2v},a_{0}}^{n_{F}(2)}(r_{\alpha}) - U_{a_{1}a_{2v},a_{0}}^{n_{F}+1(2)}(r_{\beta}) \right] + A_{\alpha}^{(1)} \int_{2} U_{a_{1}a_{2v},a_{0}}^{(1)}(r_{\alpha}) \\ &+ \sum_{b_{1}} A_{a_{1}b_{1}}^{Q(1)} \otimes \left( \int_{2} U_{b_{1}a_{2v},a_{0}}^{(1)}(r_{\alpha}) \right) - \sum_{b_{2}} \left( \int_{2} U_{a_{1}a_{2v},b_{0}}^{(1)}(r_{\beta}) \right) \otimes A_{b_{0}a_{0}}^{Q(1)} \end{split}$$



# Ansatz for the massive NLO kernels.

The following ansatz fulfils the RGE and limiting behaviour constraints:

$$\begin{split} V^{Q,n_{F}(2)}_{a_{1}a_{2},a_{0}} &= V^{n_{F}[2,0]}_{a_{1}a_{2},a_{0}} + V^{n_{F}[2,1]}_{a_{1}a_{2},a_{0}} \log \frac{m_{Q}^{2}}{\mu_{y}^{2}} + k_{00}(y \, m_{Q}) \, v^{n_{F},I}_{a_{1}a_{2},a_{0}}(z_{1},z_{2}) \\ &+ k_{11}(y \, m_{Q}) \left( V^{n_{F}+1[2,0]}_{a_{1}a_{2},a_{0}} - V^{n_{F}[2,0]}_{a_{1}a_{2},a_{0}} \right) - k_{02}(y \, m_{Q}) \left( V^{n_{F}+1[2,1]}_{a_{1}a_{2},a_{0}} - V^{n_{F}[2,1]}_{a_{1}a_{2},a_{0}} \right) \\ &+ \log \frac{\mu^{2}}{m_{Q}^{2}} \, v^{n_{F},\text{RGE}}_{a_{1}a_{2},a_{0}}(z_{1},z_{2}) \,, \end{split}$$

where

$$k_{ij}(w) = w^2 K_i(w) K_j(w) \,.$$

$$\rightarrow$$
 Sum rules can be used to constrain  $v^{n_F,I}_{a_1a_2,a_0}$ !

FOR2926 Meeting Regensburg

# $\mathsf{Part}\ \mathsf{V}$

# Summary.

#### Summary.



At small interparton distances y DPDs can be matched onto PDFs with perturbative  $1 \rightarrow 2$  splitting kernels:

Splitting evaluated at  $\mu_{\rm split} \sim 1/y$ .

▶ For  $\mu_{\text{split}} \sim m_Q$  quark mass effects have to be taken into account!

Consistent treatment of quark mass effects:

- Heavy quark decouples for  $\mu_{\text{split}} \ll m_Q$ .
- Heavy quark treated as massive for  $\mu_{\text{split}} \sim m_Q$ .
- Heavy quark treated as massless for  $\mu_{\text{split}} \gg m_Q$ .

Including quark mass effects leads to DPDs with smaller discontinuities and stabilizes DPD luminosities compared to the purely massless case!

#### Summary.



At small interparton distances y DPDs can be matched onto PDFs with perturbative  $1 \rightarrow 2$  splitting kernels:

Splitting evaluated at  $\mu_{\rm split} \sim 1/y$ .

▶ For  $\mu_{split} \sim m_Q$  quark mass effects have to be taken into account!

Consistent treatment of quark mass effects:

- Heavy quark decouples for  $\mu_{\text{split}} \ll m_Q$ .
- Heavy quark treated as massive for  $\mu_{\text{split}} \sim m_Q$ .
- Heavy quark treated as massless for  $\mu_{\text{split}} \gg m_Q$ .

Including quark mass effects leads to DPDs with smaller discontinuities and stabilizes DPD luminosities compared to the purely massless case!

Thank you for your attention!

# Part VI

Backup.



## $F_{gb}$ : massless vs. massive scheme



- Only contributes in the massless scheme.
- DPD produced by direct splitting, no evolution necessary.



- Contributes in the massive and massless schemes.
- DPD only produced by evolution.



- Contributes in the massive and massless schemes.
- DPD only produced by evolution.

Contributions (b) and (c) vanish when the splitting scale is identical to the target scale!



 $F_{qb}$ : massless vs. massive scheme



01/09/2023



Scale dependence of splitting DPDs: in depth.

In order to understand the  $\mu_{\text{split}}$  dependence of LO DPD luminosities involving  $q\bar{q}$  DPDs consider the scale variation of the involved DPDs ( $x_1 = \frac{m_W}{\sqrt{s}} \exp Y$ ,  $x_2 = \frac{m_W}{\sqrt{s}} \exp -Y$ ):

Central rapidity (Y = 0):





# Scale dependence of splitting DPDs: in depth.

In order to understand the  $\mu_{\text{split}}$  dependence of LO DPD luminosities involving  $q\bar{q}$  DPDs consider the scale variation of the involved DPDs ( $x_1 = \frac{m_W}{\sqrt{s}} \exp Y$ ,  $x_2 = \frac{m_W}{\sqrt{s}} \exp -Y$ ):

Central rapidity (Y = 0), only  $g \rightarrow q\bar{q}$  splitting:



- Contribution from g → gg and q → qg, gq splitting and evolution negligible for central rapidity (x<sub>1</sub> = x<sub>2</sub>).
- Only scale variation from initial gluon PDF.



Scale dependence of splitting DPDs: in depth.

In order to understand the  $\mu_{\text{split}}$  dependence of LO DPD luminosities involving  $q\bar{q}$  DPDs consider the scale variation of the involved DPDs ( $x_1 = \frac{m_W}{\sqrt{s}} \exp Y$ ,  $x_2 = \frac{m_W}{\sqrt{s}} \exp -Y$ ):

Non-central rapidity (Y = 3):





# Scale dependence of splitting DPDs: in depth.

In order to understand the  $\mu_{\text{split}}$  dependence of LO DPD luminosities involving  $q\bar{q}$  DPDs consider the scale variation of the involved DPDs ( $x_1 = \frac{m_W}{\sqrt{s}} \exp Y$ ,  $x_2 = \frac{m_W}{\sqrt{s}} \exp -Y$ ):

Non-central rapidity (Y = 3), only  $g \rightarrow q\bar{q}$  splitting:



- Sizeable contribution from  $g \rightarrow gg$  and  $q \rightarrow qg, gq$ splitting and evolution for non-central rapidity  $(x_1 \ll x_2)$ .
- In addition to scale variation from initial gluon PDF also uncertainties from evolution.



DPD luminosities in the massive scheme: Matching scale dependence.

Finally consider the dependence of LO DPD luminosities for dijet production on the flavour matching scales (at LO, varied by a factor of 2):



Milan Joint Pheno Seminar



DPD luminosities in the massive scheme: Matching scale dependence.

Finally consider the dependence of LO DPD luminosities for dijet production on the flavour matching scales (at LO, varied by a factor of 2):

