Extraction of unpolarized TMDPDF from global fit of Drell-Yan data at N4LL

## ART23

Valentin Moos, Ignazio Scimemi, Alexey Vladimirov, Pia Zurita





## Outline

**1** Technicalities and theory

#### 2 Included data



11 DQC

프 에 제 프 어

# Technicalities and Theory

(日) (四) (王) (王) (王)

#### Our model: distribution's shape

Parametrization of TMDPDF:

$$f_{1,f}(x,b) = \int_x^1 \frac{dy}{y} \sum_{f'} C_{f \to f'}(y, \mathbf{L}, a_s) q_{f'}\left(\frac{x}{y}\right) f_{\mathrm{NP}}^f(x, b)$$

depend on factorization scale  $\mu_{OPE} = 2 \text{ GeV} + \frac{2 \exp^{-\gamma_E}}{b}$ 

$$f_{1,f}(x,b) \equiv f_{1,f}(x,b,\mu,\zeta_{\mu})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣旨 のへで

## Our model: hard scale evolution Evolution equation:



Parametrization of TMD Evolution:

$$\mathcal{D}(b,\mu) = \mathcal{D}_{\text{small-b}}(b^*,\mu^*) + \int_{\mu^*}^{\mu} \frac{d\mu'}{\mu'} \Gamma_{\text{cusp}}(\mu') + \mathcal{D}_{\text{NP}}(b)$$

▶ perturbative series $(a_s, L_\mu)$ 

$$\mathcal{D}_{\text{small-b}} = \sum_{n,k=0}^{\infty,n} a_s^n \mathbf{L}_{\mu}^k d^{(n,k)} \quad \Gamma_{\text{cusp}}(\mu) = \sum_{n=0}^{\infty} a_s^{n+1} \Gamma_n \quad \gamma_V(\mu) = \sum_{n=1}^{\infty} a_s^n \gamma_n$$

In our fit, we truncate the series after the power(coefficient):

| $\Gamma_{\rm cusp}$ | $\gamma_V$         | $\beta$         | $\mathcal{D}_{\mathrm{small-b}}$ | $C_{f \to f'}$               | $C_V$   | PDF  |
|---------------------|--------------------|-----------------|----------------------------------|------------------------------|---------|------|
| $a_s^5 (\Gamma_4)$  | $a_s^4 (\gamma_4)$ | $a_s^5~(eta_3)$ | $a_s^4 (d^{(4,0)})$              | $a_s^3 (C_{f \to f'}^{[3]})$ | $a_s^4$ | NNLO |

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Parametrization of TMD Evolution:

$$\mathcal{D}(b,\mu) = \mathcal{D}_{\text{small-b}}(b^*,\mu^*) + \int_{\mu^*}^{\mu} \frac{d\mu'}{\mu'} \Gamma_{\text{cusp}}(\mu') + \mathcal{D}_{\text{NP}}(b)$$

Parametrization of TMD Evolution:

$$\mathcal{D}(b,\mu) = \mathcal{D}_{\text{small-b}}(b^*,\mu^*) + \int_{\mu^*}^{\mu} \frac{d\mu'}{\mu'} \Gamma_{\text{cusp}}(\mu') + \mathcal{D}_{\text{NP}}(b)$$

► Ansatz for NP part:

$$\mathcal{D}_{\mathrm{NP}}(b) = c_0 b b^* + c_1 b b^* \ln\left(rac{b^*}{B_{\mathrm{NP}}}
ight)$$

문제 소문제 문법

Parametrization of TMD Evolution:

$$\mathcal{D}(b,\mu) = \mathcal{D}_{\text{small-b}}(b^*,\mu^*) + \int_{\mu^*}^{\mu} \frac{d\mu'}{\mu'} \Gamma_{\text{cusp}}(\mu') + \mathcal{D}_{\text{NP}}(b)$$

► Ansatz for NP part:

$$\mathcal{D}_{\mathrm{NP}}(b) = c_0 b b^* + c_1 b b^* \ln\left(rac{b^*}{B_{\mathrm{NP}}}
ight)$$

 adds 3 parameters for TMDPDF scale evolution

물 > < 물 > 물

Parametrization of TMD Evolution:

$$\mathcal{D}(b,\mu) = \mathcal{D}_{\text{small-b}}(b^*,\mu^*) + \int_{\mu^*}^{\mu} \frac{d\mu'}{\mu'} \Gamma_{\text{cusp}}(\mu') + \mathcal{D}_{\text{NP}}(b)$$

► Ansatz for NP part:

$$\mathcal{D}_{\rm NP}(b) = c_0 b b^* + c_1 b b^* \ln\left(\frac{b^*}{B_{\rm NP}}\right)$$

 adds 3 parameters for TMDPDF scale evolution

$$+ 2 \times 5 (u, \overline{u}, d, \overline{d}, sea)$$

$$= 13$$
 parameters to fit.

물 > < 물 > 물

## collinear PDF choice



| Param.       | MSHT20 | HERA2.0 | NNPDF3.1 | CT18 |
|--------------|--------|---------|----------|------|
| $\kappa_1^u$ | 0.12   | 0.11    | 0.28     | 0.05 |
| $\kappa_2^u$ | 0.32   | 8.15    | 2.58     | 0.9  |

- obtained parameters stronly depend on PDF
- collinear PDF is base layer of TMDPDF
- ▶ we choose MSHT20 as the strongest candidate in JHEP 10 (2022) 118

# included Data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣旨 のへで







< 🗇 🕨

1



- high resolution scales up to 1 TeV
- including W production in DY
- 627 datapoints included 457 (SV19), 484 (MAP)

3 1 4 3 1

1

- ►  $Q^{\mu}$ : Hard process' total momentum
- ▶  $q_T$ : Its transverse component
- σ: (uncorrelated.) Standard deviation (datapoint)

ミ▶ ▲ミ▶ ミヒ のへで

- ▶  $Q^{\mu}$ : Hard process' total momentum
- ▶  $q_T$ : Its transverse component
- σ: (uncorrelated.) Standard deviation (datapoint)

$$\blacktriangleright \ \delta^2 = \frac{q_T^2}{Q^2}$$

◆□▶ ◆□▶ ◆三▶ ★三▶ 三回日 のへの

▶ Q<sup>µ</sup>: Hard process' total momentum

Criteria to include datapoint:

- ▶  $q_T$ : Its transverse component
- σ: (uncorrelated.) Standard deviation (datapoint)

$$\blacktriangleright \ \delta^2 = \frac{q_T^2}{Q^2}$$

◆□▶ ◆□▶ ◆三▶ ★三▶ 三回日 のへの

- ►  $Q^{\mu}$ : Hard process' total momentum
- ▶  $q_T$ : Its transverse component
- σ: (uncorrelated.) Standard deviation (datapoint)

$$\blacktriangleright \ \delta^2 = \frac{q_T^2}{Q^2}$$

#### Criteria to include datapoint:

• 
$$\delta < 0.25$$

물 수 문 사 문 남

- ►  $Q^{\mu}$ : Hard process' total momentum
- ▶  $q_T$ : Its transverse component
- σ: (uncorrelated.) Standard deviation (datapoint)

- $\blacktriangleright \ \delta < 0.25$
- ▶ at least **one** of the following:
  - $\P q_T < 10 \, GeV$
  - ${\it 2} \ \delta^2/\sigma < 2$

$$\blacktriangleright \delta^2 = \frac{q_T^2}{O^2}$$

◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のQQ

# PRELIMINARY Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

Data at  $\sqrt{s} = 13$  TeV



ъ

- ∢ ≣ →

Data at  $\sqrt{s} = 13$  TeV



< 3 >

## Data at $\sqrt{s} = 1.8$ TeV



ъ

- ∢ ≣ →

## Data at $\sqrt{s} = 19$ , 23 and 27 GeV



프 🖌 🔺 프 🕨

W Boson ( $\sqrt{s} = 1.8 \text{ TeV}$ )



★ 문 ▶ - 문 님





- ART23 (us) MSHT20
- SV19 NNPDF3.1

ELE DOG

18/24

< 注入 < 注入

#### u TMDPDF vs. x and b



19/24

#### $\overline{u}$ TMDPDF vs. x and b



20 / 24



## Collins-Soper kernel



CS Kernels in comparison

4 ∃ ⇒

## Scale variation



Variation of the 3 scales  $\mu, \mu^*, \mu_{OPE}$  with factors  $\frac{1}{2}, 1, 2$ 

$$\Delta d\sigma = \max_{i} \left( \left| d\sigma_{i} - d\sigma \right| \right)$$

• overall reducing (higher orders) • minor oscillations

## Recapitulation & Outlook

We work on a first of a kind N4LO extraction of TMDPDFs

▶ overall good prescription of data

Outlook:

- ▶ Upcoming: DY+SIDIS fit
- ▶ Impact Studies for EIC

- ( E ) (

#### d TMDPDF vs. x and b



## $\overline{d}$ TMDPDF vs. x and b



2/35

ъ

#### sea TMDPDF vs. x and b



3/35

ъ



-



-



• ART23 (us) • SV19

-





• ART23 (us) • SV19



• ART23 (us) • SV19





- ART23 (us) MSHT20
- SV19 NNPDF31

ELE DOG

10/35

< 注入 < 注入





• ART23 (us) MSHT20

• SV19 NNPDF31

= 200

11/35





• ART23 (us) MSHT20

• SV19 NNPDF31

(신문) 신문) 문

= 200

12/35



프 🖌 🔺 프 🕨

![](_page_47_Figure_1.jpeg)

프 > ( 프 >

![](_page_48_Figure_1.jpeg)

프 🖌 🔺 프 🕨

![](_page_49_Figure_1.jpeg)

≣ ► < ≣ ►

![](_page_50_Figure_1.jpeg)

3 1 4 3 1

![](_page_51_Figure_1.jpeg)

A 3 >

![](_page_52_Figure_1.jpeg)

Valentin Moos

표· · · 표· · 표

![](_page_53_Figure_1.jpeg)

Valentin Moos

ART23

20/35

![](_page_54_Figure_1.jpeg)

Valentin Moos

ART23

21 / 35

\* 王

포네포

![](_page_55_Figure_1.jpeg)

22/35

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣旨 のへで

CDF

![](_page_56_Figure_1.jpeg)

23 / 35

ъ

< ∃⇒

![](_page_57_Figure_1.jpeg)

∃ = ∽ へ (~ 24 / 35

イロト イヨト イヨト イヨト

CMS

![](_page_58_Figure_1.jpeg)

□ ▶ < @ ▶ < E ▶ < E ▶ E = 9 < 0<</p>

CMS

![](_page_59_Figure_1.jpeg)

ъ

ъ

![](_page_60_Figure_1.jpeg)

ъ

3

D0

![](_page_61_Figure_1.jpeg)

그 사 4월 세 세 환 세 환 세 환 비 관 이 이야?

LHCb

![](_page_62_Figure_1.jpeg)

## LHCb

![](_page_63_Figure_1.jpeg)

30 / 35

ъ

## LHCb

![](_page_64_Figure_1.jpeg)

표 🖌 🗉 🗉

## PHENIX

![](_page_65_Figure_1.jpeg)

## STAR

![](_page_66_Figure_1.jpeg)

◆□▶ ◆□▶ ▲目≯ ▲目≯ ▲□▼

![](_page_67_Figure_1.jpeg)

Valentin Moos

34 / 35

1

ъ

## E772 + E605

![](_page_68_Figure_1.jpeg)

Valentin Moos

35/35