TMD factorization beyond the leading power

Alexey Vladimirov
Complutense University of Madrid

\(\underset{\substack{comandidad
de Madrid}}{\star \star \star \star \star}\)

Meeting of the Forschergruppe FOR2926

Transverse momentum dependent factorization

$$
\frac{d \sigma}{d q_{T}} \simeq \sigma_{0} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i\left(b q_{T}\right)}\left|C_{V}(Q)\right|^{2} F_{1}\left(x_{1}, b ; Q, Q^{2}\right) F_{2}\left(x_{2}, b ; Q, Q^{2}\right)
$$

LP term is studied VERY WELL!

$$
q^{2}=\underset{q_{T}}{ \pm Q^{2}} \quad \begin{gathered}
\text { momentum of hard probe } \\
q_{T}^{\mu}
\end{gathered} \text { transverse component }
$$

- Sub-leading power observables

SIDIS polarized structure

by Timothy B. Hayward at QCD-N

To describe it, one needs TMD factorization at NLP.
[CLAS, 2101.03544]

- Sub-leading power observables

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{\mathbf{T}}^{Z} \mathrm{~d} y^{Z} \mathrm{~d} m^{Z} \mathrm{~d} \cos \theta \mathrm{~d} \phi} & =\frac{3}{16 \pi} \frac{\mathrm{~d} \sigma^{U+L}}{\mathrm{~d} p_{\mathrm{T}}^{Z} \mathrm{~d} y^{Z} \mathrm{~d} m^{Z}} \\
& \left\{\left(1+\cos ^{2} \theta\right)+\frac{1}{2} A_{0}\left(1-3 \cos ^{2} \theta\right)+A_{1} \sin 2 \theta \cos \phi\right. \\
& +\frac{1}{2} A_{2} \sin ^{2} \theta \cos 2 \phi+A_{3} \sin \theta \cos \phi+A_{4} \cos \theta \\
& \left.+A_{5} \sin ^{2} \theta \sin 2 \phi+A_{6} \sin 2 \theta \sin \phi+A_{7} \sin \theta \sin \phi\right\}
\end{aligned}
$$

DY angular coefficients

To describe it, one needs TMD factorization at NNLP.

- Sub-leading power observables
$\frac{d \sigma}{d x d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}=$
$\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}\right.$

Longitudinal photons

To describe it, one needs TMD factorization at NNLP.

- Increase of applicability domain

- Increase of applicability domain

Phase space of EIC is centered directly in the transition region

COMPASS, JLab fixed target LHCb
have large contribution of power corrections

Answer to all these problems POWER CORRECTIONS

$$
\begin{aligned}
\frac{d \sigma}{d q_{T}} \simeq & \sigma_{0} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i\left(b q_{T}\right)}\left\{\left|C_{V}(Q)\right|^{2} F_{1}\left(x_{1}, b ; Q, Q^{2}\right) F_{2}\left(x_{2}, b ; Q, Q^{2}\right) \longleftarrow\right. \text { LP } \\
& +\left(\frac{q_{T}}{Q} ; \frac{k_{T}}{Q} ; \frac{M}{Q}\right)\left[C_{2}(Q) \otimes F_{3}\left(x, b ; Q, Q^{2}\right) F_{4}\left(x, b ; Q, Q^{2}\right)\right]\left(x_{1}, x_{2}\right) \longleftarrow \text { NLP } \\
& +\left(\frac{q_{T}^{2}}{Q^{2}} ; \frac{k_{T} q_{T}}{Q^{2}} ; \ldots\right)\left[C_{3}(Q) \otimes F_{5}\left(x, b ; Q, Q^{2}\right) F_{6}\left(x, b ; Q, Q^{2}\right)\right]\left(x_{1}, x_{2}\right) \longleftarrow \text { NNLP } \\
& +\ldots
\end{aligned}
$$

Outline

- Types of power corrections
- Factorization at NLP
- Beyond NLP

Four types of power corrections in TMD factorization

$$
\text { (1) } \frac{k_{T}}{Q} \text { corrections } \Leftrightarrow \text { kinematic power corrections (KPC) }
$$

Derivatives of TMDs with respect to $b^{\mu} \Leftrightarrow$ tot.derivatives of semi-compact operators

$$
\begin{gathered}
\frac{i}{Q} \int d^{2} b e^{-i(q b)_{T}} F_{1}\left(x_{1}, b ; Q, Q^{2}\right) \frac{\partial}{\partial b_{\mu}} F_{2}\left(x_{2}, b ; Q, Q^{2}\right) \\
\int d^{2} \mathbf{k}_{1} d^{2} \mathbf{k}_{2} \delta^{(2)}\left(\mathbf{q}_{T}-\mathbf{k}_{1}-\mathbf{k}_{2}\right) \frac{\mathbf{k}_{2}^{\mu}}{Q} F_{1}\left(x_{1}, \mathbf{k}_{1} ; Q, Q^{2}\right) F_{2}\left(x_{2}, \mathbf{k}_{2} ; Q, Q^{2}\right)
\end{gathered}
$$

Four types of power corrections in TMD factorization

$$
\text { (2) } \frac{\Lambda_{\mathrm{QCD}}}{Q} \text { corrections } \Leftrightarrow \text { genuine power corrections }
$$

Higher twist TMD distributions

$$
\int d^{2} b e^{-i(q b)_{T}} \int_{-1+x_{2}}^{1} \frac{d y}{y} F_{1}\left(x_{1}, b ; Q, Q^{2}\right) \Phi_{\oplus}\left(-x-y, y, x, b ; Q, Q^{2}\right)
$$

Four types of power corrections in TMD factorization

$$
\text { (3) } \frac{q_{T}}{Q} \text { corrections } \Leftrightarrow \frac{1}{b Q} \text { corrections }
$$

Several sources

$$
\lim _{b \rightarrow 0} F_{\mathrm{tw}-\mathrm{N}}(x, b)=\frac{\alpha_{s}}{b^{N-1}} F_{\mathrm{tw}-2}(x, b)
$$

$$
\begin{aligned}
& \int d^{2} b e^{-i(q b)} T \frac{1}{b^{2} Q^{2}} F_{1}\left(x_{1}, b ; Q, Q^{2}\right) F_{2}\left(x_{2}, b ; Q, Q^{2}\right) \\
& \int d^{2} \mathbf{k}_{1} d^{2} \mathbf{k}_{2} \delta^{(2)}\left(\mathbf{q}_{T}-\mathbf{k}_{1}-\mathbf{k}_{2}\right) \frac{\mathbf{q}_{T}^{2}}{Q^{2}} F_{1}\left(x_{1}, \mathbf{k}_{1} ; Q, Q^{2}\right) F_{2}\left(x_{2}, \mathbf{k}_{2} ; Q, Q^{2}\right)
\end{aligned}
$$

Four types of power corrections in TMD factorization

Target mass corrections

Simplest?
Not systematically studied
Ignore it today

$$
\left.\begin{array}{l}
W^{\mu \nu}=\frac{1}{N_{c}} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i\left(q_{T} b\right)}\{ \\
\Phi_{2} \times \Phi_{2} \\
+\frac{1}{Q}\left(D \Phi_{2} \times \Phi_{2}+\quad \Phi_{2} \times \Phi_{3}\right) \\
+\frac{1}{Q^{2}}\left(D^{2} \Phi_{2} \times \Phi_{2}+D \Phi_{2} \times \Phi_{3}+\Phi_{3} \times \Phi_{3}+\Phi_{2} \times \Phi_{4}+\frac{\Phi_{2} \times \Phi_{2}}{b^{2}}\right) \\
+\frac{1}{Q^{3}}\left(D^{3} \Phi_{2} \times \Phi_{2}+\quad \ldots \quad+\Phi_{3} \times \Phi_{4}+\right. \\
\ldots
\end{array}+\frac{D \Phi_{2} \times \Phi_{2}}{b^{2}}\right) . \quad \begin{aligned}
& \ldots \\
& +\frac{1}{Q^{4}}\left(D^{4} \Phi_{2} \times \Phi_{2}+\quad \ldots\right. \\
& +\cdots \Phi_{2} \times \Phi_{5}+ \\
& \}^{\mu \nu},
\end{aligned}
$$

From the (twist-2) resummation perspective all types of corrections are alike $\sim(b Q)^{-n}$

Kinematic power corrections

$$
\begin{equation*}
\partial_{\mu} f_{1}(x, b) \longrightarrow \partial_{\mu}\left(1+a_{s}\left(-2 p(x) \ln \left(b^{2} \mu^{2}\right)+\ldots\right)+\ldots\right) \otimes q(x)=-4 b^{\mu} \frac{a_{s}}{b^{2}}[p \otimes q](x)+\ldots \tag{1}
\end{equation*}
$$

Genuine power corrections

- TMD twist-3 matches collinear twist-2
[S.Rodini, AV, 2204.03856]

$$
\begin{aligned}
f_{\ominus}^{\perp}\left(x_{1}, x_{2}, x_{3}, b\right)=\frac{2 a_{s}}{M^{2} b^{2}} & {\left[-C_{F} \frac{x_{1}-x_{3}}{x_{1}} f_{1}\left(-x_{1}\right)\left(\theta\left(x_{2}, x_{3}\right)-\theta\left(-x_{2},-x_{3}\right)\right)\right.} \\
& \left.+T_{F} \frac{x_{1}-x_{3}}{x_{2}} f_{g}\left(-x_{2}\right)\left(\theta\left(x_{1}, x_{3}\right)-\theta\left(-x_{1},-x_{3}\right)\right)\right]+\mathcal{O}\left(b^{2}, \frac{a_{s}^{2}}{b^{2}}\right)
\end{aligned}
$$

From the (twist-2) resummation perspective all types of corrections are alike $\sim(b Q)^{-n}$

Kinematic power corrections

$$
\begin{equation*}
\partial_{\mu} f_{1}(x, b) \longrightarrow \partial_{\mu}\left(1+a_{s}\left(-2 p(x) \ln \left(b^{2} \mu^{2}\right)+\ldots\right)+\ldots\right) \otimes q(x)=-4 b^{\mu} \frac{a_{s}}{b^{2}}[p \otimes q](x)+\ldots \tag{1}
\end{equation*}
$$

Genuine power corrections

- TMD twist-3 matches collinear twist-2
[S.Rodini, AV, 2204.03856]

$$
\begin{aligned}
f_{\ominus}^{\perp}\left(x_{1}, x_{2}, x_{3}, b\right)=\frac{2 a_{s}}{M^{2} b^{2}} & {\left[-C_{F} \frac{x_{1}-x_{3}}{x_{1}} f_{1}\left(-x_{1}\right)\left(\theta\left(x_{2}, x_{3}\right)-\theta\left(-x_{2},-x_{3}\right)\right)\right.} \\
& \left.+T_{F} \frac{x_{1}-x_{3}}{x_{2}} f_{g}\left(-x_{2}\right)\left(\theta\left(x_{1}, x_{3}\right)-\theta\left(-x_{1},-x_{3}\right)\right)\right]+\mathcal{O}\left(b^{2}, \frac{a_{s}^{2}}{b^{2}}\right)
\end{aligned}
$$

BUT they do not mix in the properly organized TMD factorization.

$$
\Longrightarrow \text { TMD-twist }
$$

TMD-twist

Any TMD operator is the product of two semi-compact operators

$$
\mathcal{O}_{N M}\left(\left\{z_{1}, \ldots, z_{n}\right\}, b\right)=U_{N}\left(\left\{z_{1}, \ldots\right\}, b\right) U_{M}\left(\left\{\ldots, z_{n}\right\}, b\right)
$$

$$
\begin{gathered}
\mu^{2} \frac{d}{d \mu^{2}} \mathcal{O}_{N M}\left(\left\{z_{1}, \ldots, z_{n}\right\}, b ; \mu, \zeta\right)=\left(\gamma_{N}\left(\left\{z_{1}, \ldots\right\}\right)+\gamma_{M}\left(\left\{\ldots, z_{n}\right\}\right)\right) \otimes \mathcal{O}_{N M}\left(\left\{z_{1}, \ldots, z_{n}\right\}, b ; \mu, \zeta\right) \\
\zeta \frac{d}{d \zeta} \mathcal{O}_{N M}\left(\left\{z_{1}, \ldots, z_{n}\right\}, b ; \mu, \zeta\right)=-\mathcal{D}_{N M} \mathcal{O}_{N M}\left(\left\{z_{1}, \ldots, z_{n}\right\}, b ; \mu, \zeta\right)+? ?
\end{gathered}
$$

TMD operators with different TMD-twist do not mix under evolution (at least UV evolution)

TMD-twist-(1,1)

Usual TMDs
$U_{1}=[..] \xi=$ good-component of quark field (twist-1)

$$
\widetilde{\Phi}_{11}^{[\Gamma]}\left(\left\{z_{1}, z_{2}\right\}, b\right)=\langle p, s| \bar{\xi}\left(z_{1} n+b\right) . . \frac{\Gamma}{2} . . \xi\left(z_{2} n\right)|p, s\rangle
$$

$$
\begin{aligned}
\mu^{2} \frac{d}{d \mu^{2}} \widetilde{\Phi}_{11}\left(\left\{z_{1,2}\right\}, b ; \mu, \zeta\right) & =\left(\widetilde{\gamma}_{1}\left(z_{1}, \mu, \zeta\right)+\widetilde{\gamma}_{1}\left(z_{2}, \mu, \zeta\right)\right) \widetilde{\Phi}_{11}\left(\left\{z_{1,2}\right\}, b ; \mu, \zeta\right) \\
\zeta \frac{d}{d \zeta} \widetilde{\Phi}_{11}\left(\left\{z_{1,2}\right\}, b ; \mu, \zeta\right) & =-\mathcal{D}(b, \mu) \widetilde{\Phi}_{11}\left(\left\{z_{1,2}\right\}, b ; \mu, \zeta\right)
\end{aligned}
$$

- $\gamma_{1}=$ anomalous dimension of $U_{1}\left(\mathrm{~N}^{3} \mathrm{LO}\right)$
- $\mathcal{D}=\mathrm{CS}$ kernel (NP)

TMD-twist-(2,1)

Appear at NLP

$$
\begin{gathered}
U_{1}=[. .] \xi=\text { good-component of quark field (twist-1) } \\
U_{2}=[. .] F_{\mu+}[. .] \xi=\text { good-components of gluon and quark fields (twist-2) }
\end{gathered}
$$

$$
\widetilde{\Phi}_{21}^{[\Gamma]}\left(\left\{z_{1}, z_{2}, z_{3}\right\}, b\right)=\langle p, s| \bar{\xi}\left(z_{1} n+b\right) . . F_{\mu+}\left(z_{2} n+b\right) . . \frac{\Gamma}{2} . . \xi\left(z_{3} n\right)|p, s\rangle
$$

$$
\begin{aligned}
\mu^{2} \frac{d}{d \mu^{2}} \widetilde{\Phi}_{21}\left(\left\{z_{1,2,3}\right\}, b ; \mu, \zeta\right) & =\left(\widetilde{\gamma}_{2}\left(z_{1}, z_{2}, \mu, \zeta\right)+\widetilde{\gamma}_{1}\left(z_{3}, \mu, \zeta\right)\right) \widetilde{\Phi}_{21}\left(\left\{z_{1,2,3}\right\}, b ; \mu, \zeta\right) \\
\zeta \frac{d}{d \zeta} \widetilde{\Phi}_{21}\left(\left\{z_{1,2,3}\right\}, b ; \mu, \zeta\right) & =-\mathcal{D}(b, \mu) \widetilde{\Phi}_{21}\left(\left\{z_{1,2,3}\right\}, b ; \mu, \zeta\right)
\end{aligned}
$$

- $\gamma_{1}=$ anomalous dimension of $U_{1}\left(\mathrm{~N}^{3} \mathrm{LO}\right)$
- $\gamma_{2}=$ anomalous dimension of U_{2} (LO)
- $\mathcal{D}=\mathrm{CS}$ kernel (NP)

Making story short: we introduce real/T-definite combination of operator and parametrize them

- 32 distributions $(\bullet=\oplus$ and \ominus)
- 16 T-odd and 16 T-even

Example

$$
\begin{aligned}
\Phi_{\bullet}^{\mu\left[\gamma^{+}\right]}\left(x_{1,2,3}, b\right)= & \epsilon^{\mu \nu} s_{T \nu} M f_{\bullet T}\left(x_{1,2,3}, b\right)+i b^{\mu} M^{2} f_{\bullet}^{\perp}\left(x_{1,2,3}, b\right) \\
& +i \lambda \epsilon^{\mu \nu} b_{\nu} M^{2} f_{\bullet L}^{\perp}\left(x_{1,2,3}, b\right)+b^{2} M^{3} \epsilon_{T}^{\mu \nu}\left(\frac{g_{T, \nu \rho}}{2}-\frac{b_{\nu} b_{\rho}}{b^{2}}\right) s_{T}^{\rho} f_{\bullet T}^{\perp}\left(x_{1,2,3}, b\right) \\
& f_{\oplus, T ; D Y}=f_{\oplus, T ; S I D I S}, \quad f_{\oplus ; D Y}^{\perp}=-f_{\oplus ; S I D I S}^{\perp}
\end{aligned}
$$

	U	L	$\mathrm{T}_{J=0}$	$\mathrm{~T}_{J=1}$	$\mathrm{~T}_{J=2}$
U	$f{ }_{\bullet}$	g_{\bullet}		h_{\bullet}	h_{\bullet}^{\perp}
L	$f_{\bullet L}^{\perp}$	$g_{\bullet L}^{\perp}$	$h_{\bullet L}$		$h_{\bullet L}^{\perp}$
T	$f \bullet T$,	$f \bullet T$	$g_{\bullet T}, \quad g_{\bullet T}^{\perp}$	$h_{\bullet T}^{D} \perp$	$h_{\bullet T}^{A} \perp$

$$
\left.\begin{array}{rl}
\mu^{2} \frac{d}{d \mu^{2}}\left[\begin{array}{c}
F_{\oplus} \\
F_{\ominus}
\end{array}\right]= & \left(\frac{\Gamma_{\text {cusp }}}{2}\right.
\end{array} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{1} x_{2} x_{3}}\right)\left[\begin{array}{c}
F_{\oplus} \\
F_{\ominus}
\end{array}\right],
$$

- Real functions $=$ real evolution
- Mixing is proportional to s, so T-parity is preserved, and distributions are universal
- Similar structure in the coefficient function, such that all poles cancel
- All kernels are known at 1-loop

Skipping material

- TMD factorization at NLP
[AV, V.Moos, I.Scimemi,2109.09771]
[M.Ebert,A.Gao,I.Stewart, 2112.07680]
[S.Rodini, AV, 2211.04494] [S.Rodini, AV, in prep.]
- Derived and checked at NLO
- Mechanism of special rapidity divergences and restoration of boost-invariance
- Not the same as "naive" TMD factorization at NLP
- Expression for cross-section is rather complicated (to be released soon)
- Expression for quasi-TMDPDF is known

- $\Gamma=\left\{\gamma^{+}, \gamma^{+} \gamma^{5}, \sigma^{\alpha+} \gamma^{5}\right\}$ LP factorization
[Ji,Luo, ...,Stewart, Ebert,..., 19-20]
- $\Gamma=\left\{1, \gamma^{5}, \gamma_{T}^{\alpha}, \sigma^{+-}, \ldots\right\}$ NLP factorization
[S.Rodini, AV, 2211.04494]
- $\Gamma=\left\{\gamma^{-}, \gamma^{-} \gamma^{5}, \sigma^{\alpha-} \gamma^{5}\right\}$ NNLP factorization factorization

$$
\begin{aligned}
\Omega^{[\Gamma]}(x, b, \mu)= & \Psi(b ; \mu, \bar{\zeta}) \mathbb{C}_{11} \Phi_{11}^{\llbracket \Gamma \rrbracket}(x, b ; \mu, \zeta) \\
& +\frac{i}{2 x P_{+}} \mathbb{C}_{11} \Psi(b)\left(\partial_{\mu}-\frac{1}{2}\left[\partial_{\mu} \mathcal{D}(b, \mu)\right] \ln \left(\frac{\bar{\zeta}}{\zeta}\right)\right) \Phi_{11}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma+\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(x, b ; \mu, \zeta) \\
& +\frac{1}{2 x P_{+}} \mathbb{C}_{11 v} \boldsymbol{\Psi}_{\mu, 21}^{(0)}(b ; \mu, \bar{\zeta}) \Phi_{11}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma+\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(x, b ; \mu, \zeta) \\
& +\frac{i}{2 x P_{+}} \Psi(b ; \mu, \bar{\zeta}) \int_{-1}^{1} d x_{2}\left[\mathbb{C}_{R}\left(x, x_{2}\right) \boldsymbol{\Phi}_{\mu, \oplus}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma-\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(\tilde{x}, b ; \mu, \zeta)\right. \\
& +s \pi \mathbb{C}_{I}\left(x, x_{2}\right) \boldsymbol{\Phi}_{\mu, \ominus}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma-\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(\tilde{x}, b ; \mu, \zeta) \\
& -i \mathbb{C}_{R}\left(x, x_{2}\right) \boldsymbol{\Phi}_{\mu, \ominus}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma+\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(\tilde{x}, b ; \mu, \zeta) \\
& \left.+i s \pi \mathbb{C}_{I}\left(x, x_{2}\right) \boldsymbol{\Phi}_{\mu, \oplus}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma+\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(\tilde{x}, b ; \mu, \zeta)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& \Omega^{[\Gamma]}(x, b, \mu)= \Psi(b ; \mu, \bar{\zeta}) \mathbb{C}_{11} \Phi_{11}^{\llbracket \Gamma \rrbracket}(x, b ; \mu, \zeta) \\
&+\frac{i}{2 x P_{+}} \mathbb{C}_{11} \Psi(b)(\sqrt{\text { LP term }} \\
& \Phi_{11} \text { is physical TMDPDF }
\end{aligned}{ }^{\mu} \mathbb{I}^{2}(x, b ; \mu, \zeta) \\
& +\frac{1}{2 x P_{+}} \mathbb{C}_{11 v} \Psi_{\mu, 21}^{(0)} \underset{(\sigma, \mu, \zeta) \Psi_{11}}{ } \Psi_{\text {is "lattice"-specific function }}^{(\omega, v, \mu, \zeta)} \\
& +\frac{i}{2 x P_{+}} \Psi(b ; \mu, \bar{\zeta}) \int_{-1}^{1} d x_{2}\left[\mathbb{C}_{R}\left(x, x_{2}\right) \boldsymbol{\Phi}_{\mu, \oplus}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma-\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(\tilde{x}, b ; \mu, \zeta)\right. \\
& +s \pi \mathbb{C}_{I}\left(x, x_{2}\right) \boldsymbol{\Phi}_{\mu, \ominus}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma-\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(\tilde{x}, b ; \mu, \zeta) \\
& -i \mathbb{C}_{R}\left(x, x_{2}\right) \boldsymbol{\Phi}_{\mu, \ominus}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma+\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(\tilde{x}, b ; \mu, \zeta) \\
& \left.+i s \pi \mathbb{C}_{I}\left(x, x_{2}\right) \boldsymbol{\Phi}_{\mu, \oplus}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma+\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(\tilde{x}, b ; \mu, \zeta)\right] \\
& +\mathcal{O}\left(\lambda^{2}\right),
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\Omega^{[\Gamma]}(x, b, \mu)= & \Psi(b ; \mu, \bar{\zeta}) \mathbb{C}_{11} \Phi_{11}^{\llbracket \Gamma \rrbracket}(x, b ; \mu, \zeta) \\
& +\frac{i}{2 x P_{+}} \mathbb{C}_{11} \Psi(b)\left(\partial_{\mu}-\frac{1}{2}\left[\partial_{\mu} \mathcal{D}(b, \mu)\right] \ln \left(\frac{\bar{\zeta}}{\zeta}\right)\right) \Phi_{11}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma+\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(x, b ; \mu, \zeta)
\end{array}\right]
$$

$$
\begin{aligned}
& \Omega^{[\Gamma]}(x, b, \mu)=\Psi(b ; \mu, \bar{\zeta}) \mathbb{C}_{11} \Phi_{11}^{\llbracket \Gamma \rrbracket}(x, b ; \mu, \zeta) \\
& +\frac{i}{2 x P_{+}} \mathbb{C}_{11} \Psi(b)\left(\partial_{\mu}-\frac{1}{2}\left[\partial_{\mu} \mathcal{D}(b, \mu)\right] \ln \left(\frac{\bar{\zeta}}{\zeta}\right)\right) \Phi_{11}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma+\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(x, b ; \mu, \zeta) \\
& +\frac{1}{2 x P_{+}} \mathbb{C}_{11 v} \Psi_{\mu, 21}^{(0)}(b ; \mu, \bar{\zeta}) \Phi_{11}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma+\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(x, b ; \mu, \zeta) \quad \text { genuine NLP term } \\
& +\frac{i}{2 x P_{+}} \Psi(b ; \mu, \bar{\zeta}) \int_{-1}^{1} d x_{2}\left[\mathbb { C } _ { R } \left(x, x ; \quad \Psi_{21}\right.\right. \text { is "lattice"-specific function } \\
& \begin{array}{l}
+s \pi \mathbb{C}_{I}\left(x,{ }_{2},-\mu, \ominus\right. \\
-i \mathbb{C}_{R}\left(x, x_{2}\right) \Phi_{\substack{\llbracket, \ominus}}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma+\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(\tilde{x}, b ; \mu, \zeta)
\end{array} \\
& \left.+i s \pi \mathbb{C}_{I}\left(x, x_{2}\right) \boldsymbol{\Phi}_{\mu, \oplus}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma+\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(\tilde{x}, b ; \mu, \zeta)\right] \\
& +\mathcal{O}\left(\lambda^{2}\right),
\end{aligned}
$$

- Φ_{\oplus} and Φ_{\ominus} are TMDPDFs of twist-3
- Two types of terms, with different coefficient functions
- s is the direction of the Wilson line

$$
\begin{equation*}
{ }^{+} \Gamma+\Gamma \gamma^{+} \gamma^{\mu} \rrbracket(x, b ; \mu, \zeta) \tag{4.48}
\end{equation*}
$$

$$
\begin{aligned}
& +\frac{i}{2 x P_{+}} \Psi(b ; \mu, \bar{\zeta}) \int_{-1}^{1} d x_{2}\left[\mathbb{C}_{R}\left(x, x_{2}\right) \boldsymbol{\Phi}_{\mu, \oplus}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma-\Gamma \gamma^{+} \gamma^{\mu} \mathbb{\rrbracket}}(\tilde{x}, b ; \mu, \zeta)\right. \\
& +s \pi \mathbb{C}_{I}\left(x, x_{2}\right) \boldsymbol{\Phi}_{\mu, \ominus}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma-\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(\tilde{x}, b ; \mu, \zeta) \\
& -i \mathbb{C}_{R}\left(x, x_{2}\right) \boldsymbol{\Phi}_{\mu, \ominus}^{\llbracket \mu^{\mu} \gamma^{+} \Gamma+\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(\tilde{x}, b ; \mu, \zeta) \\
& \left.+i s \pi \mathbb{C}_{I}\left(x, x_{2}\right) \boldsymbol{\Phi}_{\mu, \oplus}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma+\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(\tilde{x}, b ; \mu, \zeta)\right] \\
& +\mathcal{O}\left(\lambda^{2}\right),
\end{aligned}
$$

- Φ_{\oplus} and Φ_{\ominus} are TMDPDFs of twist-3
- Two types of terms, with different coefficient functions
- s is the direction of the Wilson line
- $\mathbb{C}_{I} \sim \delta\left(x_{2}\right)$, Qiu-Sterman-like contribution in TMD factorization

$$
{ }^{+} \Gamma+\Gamma \gamma^{+} \gamma^{\mu} \rrbracket(x, b ; \mu, \zeta)
$$

genuine NLP term

$$
\begin{aligned}
& +\frac{i}{2 x P_{+}} \Psi(b ; \mu, \bar{\zeta}) \int_{-1}^{1} d x_{2}\left[\mathbb{C}_{R}\left(x, x_{2}\right) \boldsymbol{\Phi}_{\mu, \oplus}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma-\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(\tilde{x}, b ; \mu, \zeta)\right. \\
& \\
& +s \pi \mathbb{C}_{I}\left(x, x_{2}\right) \boldsymbol{\Phi}_{\mu,}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma-\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(\tilde{x}, b ; \mu, \zeta) \\
& \\
& \\
& \\
& \\
& +i \mathbb{C}_{R}\left(x, x_{2}\right) \boldsymbol{\Phi}_{\mu, \ominus}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma+\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(\tilde{x}, b ; \mu, \zeta) \\
& +i s \pi \mathbb{C}_{I}\left(x, x_{2}\right) \boldsymbol{\Phi}_{\mu, \oplus}^{\llbracket \gamma^{\mu} \gamma^{+} \Gamma+\Gamma \gamma^{+} \gamma^{\mu} \rrbracket}(\tilde{x}, b ; \mu, \zeta)
\end{aligned}
$$

Generally NLP factorization is very cumbersome, but for some channels it simplifies, and can be used practically, see [Hai-Tao Shu, M.Schlemmer, et al, 2302.06502] also talk by Hai-Tao Shu (today)

$$
\begin{aligned}
& W^{\mu \nu}=\frac{1}{N_{c}} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i\left(q_{T} b\right)}\{ \\
& \Phi_{2} \times \Phi_{2} \\
& +\frac{1}{Q}\left(D \Phi_{2} \times \Phi_{2}+\quad \Phi_{2} \times \Phi_{3}\right) \quad \mathrm{NLP} \sqrt{ } \\
& +\frac{1}{Q^{2}}\left(D^{2} \Phi_{2} \times \Phi_{2}+D \Phi_{2} \times \Phi_{3}+\Phi_{3} \times \Phi_{3}+\quad \Phi_{2} \times \Phi_{4}+\frac{\Phi_{2} \times \Phi_{2}}{b^{2}}\right) \\
& +\frac{1}{Q^{3}}\left(D^{3} \Phi_{2} \times \Phi_{2}+\quad \ldots\right. \\
& +\frac{1}{Q^{4}}\left(D^{4} \Phi_{2} \times \Phi_{2}+\quad \ldots\right. \\
& +\cdots \Phi_{3} \times \Phi_{4}+ \\
& +\cdots
\end{aligned}
$$

$$
\begin{aligned}
& W^{\mu \nu}=\frac{1}{N_{c}} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i\left(q_{T} b\right)}\{ \\
& \left.+\frac{1}{Q} \begin{array}{r}
\Phi_{2} \times \Phi_{2} \\
D \Phi_{2} \times \Phi_{2}
\end{array}+\Phi_{2} \times \Phi_{3}\right) \\
& \left.+\frac{1}{Q^{2}}\left(D^{2} \Phi_{2} \times \Phi_{2}\right)+D \Phi_{2} \times \Phi_{3}+\Phi_{3} \times \Phi_{3}+\Phi_{2} \times \Phi_{4}+\frac{\Phi_{2} \times \Phi_{2}}{b^{2}}\right) \\
& +\frac{1}{Q^{3}}\left(D^{3} \Phi_{2} \times \Phi_{2}+\cdots \quad+\Phi_{3} \times \Phi_{4}+\cdots+\frac{D \Phi_{2} \times \Phi_{2}}{b^{2}}\right) \\
& \left.+\frac{1}{Q^{4}}\left(D^{4} \Phi_{2} \times \Phi_{2}\right)+\quad \cdots \quad+\Phi_{2} \times \Phi_{5}+\quad \ldots \quad+\frac{D \Phi_{2} \times \Phi_{2}}{b^{2}}+\frac{\Phi_{2} \times \Phi_{2}}{b^{4}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& W^{\mu \nu}=\frac{1}{N_{c}} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i\left(q_{T} b\right)}\left\{\begin{array}{l}
\quad \begin{array}{l}
\text { Same NP content as at LP } \\
\text { Looks conceptually possible }
\end{array} \\
\Phi_{2} \times \Phi_{2} \\
+\frac{1}{Q}\left(D \Phi_{2} \times \Phi_{2}+\Phi_{2} \times \Phi_{1}\right)+\frac{b}{L_{2}} \Phi_{2} \times \Phi_{2} \\
+\frac{1}{Q^{2}}\left(D^{2} \Phi_{2} \times \Phi_{2}+D \Phi_{2} \times \Phi_{3}+\Phi_{3} \times \Phi_{3}+\Phi_{2} \times \Phi_{4}+\frac{\Phi_{2} \times \Phi_{2}}{b^{2}}\right) \\
+\frac{1}{Q^{3}}\left(D^{3} \Phi_{2} \times \Phi_{2}+\quad \ldots\right. \\
+\frac{1}{Q^{4}}\left(D^{4} \Phi_{2} \times \Phi_{2}+\right. \\
\cdots
\end{array}+\Phi_{3} \times \Phi_{4}+\cdots+\frac{D \Phi_{2} \times \Phi_{2}}{b^{2}}\right)+\frac{b}{b^{4}} \Phi_{2} \times \Phi_{2} \\
& +\cdots\}^{\mu \nu},
\end{aligned}
$$

Resummed KPC

$$
\begin{aligned}
\frac{d \sigma}{d q_{T}}= & \left|C_{V}(Q)\right|^{2} \int d^{2} \mathbf{k}_{1} d^{2} \mathbf{k}_{2} \delta\left(\mathbf{q}_{T}-\mathbf{k}_{1}-\mathbf{k}_{2}\right) \theta\left(\left(\mathbf{k}_{1}-\mathbf{k}_{2}\right)^{2}<\tau^{2}\right) \\
& \frac{\rho_{p p}(\text { polarizations })}{\sqrt{\lambda\left(\mathbf{k}_{1}^{2}, \mathbf{k}_{2}^{2}, \tau^{2}\right)}} F\left(\xi_{1}\left(\mathbf{k}_{1,2}\right), \mathbf{k}_{1}^{2}, Q, Q^{2}\right) F\left(\xi_{2}\left(\mathbf{k}_{1,2}\right), \mathbf{k}_{2}^{2}, Q, Q^{2}\right)
\end{aligned}
$$

- Restore gauge and Lorenz invariance
- Full expression is raver cumbersome, but simplifies at $\zeta=\bar{\zeta}=Q^{2}$
- Can be resummed to a simpler expression at $\zeta=\bar{\zeta}=Q^{2}$ and in momentum space

$$
\begin{aligned}
\frac{d \sigma}{d q_{T}}= & \left|C_{V}(Q)\right|^{2} \int d^{2} \mathbf{k}_{1} d^{2} \mathbf{k}_{2} \delta\left(\mathbf{q}_{T}-\mathbf{k}_{1}-\mathbf{k}_{2}\right) \theta\left(\left(\mathbf{k}_{1}-\mathbf{k}_{2}\right)^{2}<\tau^{2}\right) \\
& \frac{\rho_{p p}(\text { polarizations })}{\sqrt{\lambda\left(\mathbf{k}_{1}^{2}, \mathbf{k}_{2}^{2}, \tau^{2}\right)}} F\left(\xi_{1}\left(\mathbf{k}_{1,2}\right), \mathbf{k}_{1}^{2}, Q, Q^{2}\right) F\left(\xi_{2}\left(\mathbf{k}_{1,2}\right), \mathbf{k}_{2}^{2}, Q, Q^{2}\right)
\end{aligned}
$$

Conclusion

TMD factorization at NLP

- Operator expression at NLP/NLO is known
- Full classification is done
- Restoration of EM-conservation
- Also for qTMDs

TMD factorization beyond NLP

- NNLP is done! (finalizing NLO)
- Singularities at $b \rightarrow 0$
- Applications?

Conclusion

TMD factorization at NLP

- Operator expression at NLP/NLO is known
- Full classification is done
- Restoration of EM-conservation
- Also for qTMDs

TMD factorization beyond NLP

- NNLP is done! (finalizing NLO)
- Singularities at $b \rightarrow 0$
- Applications?

Thank you for attention!

Backup

To momentum-fraction space

Evolution equations for TMD-twist-(1,2) and (2,1) distribution

$$
\begin{aligned}
& \mu^{2} \frac{d}{d \mu^{2}} \Phi_{\mu, 21}^{[\Gamma]}=\left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{1} x_{2} x_{3}}+2 \pi i s \Theta_{x_{1} x_{2} x_{3}}\right) \Phi_{\mu, 21}^{[\Gamma]} \\
&+\mathbb{P}_{x_{2} x_{1}}^{A} \otimes \Phi_{\nu, 21}^{\left[\gamma^{\nu} \gamma^{\mu} \Gamma\right]}+\mathbb{P}_{x_{2} x_{1}}^{B} \otimes \Phi_{\nu, 21}^{\left[\gamma^{\mu} \gamma^{\nu} \Gamma\right]} \\
& \mu^{2} \frac{d}{d \mu^{2}} \Phi_{\mu, 12}^{[\Gamma]}=\left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{3} x_{2} x_{1}}+2 \pi i s \Theta_{x_{3} x_{2} x_{1}}\right) \Phi_{\mu, 12}^{[\Gamma]} \\
&+\mathbb{P}_{x_{2} x_{3}}^{A} \otimes \Phi_{\nu, 12}^{\left[\Gamma \gamma^{\mu} \gamma^{\nu}\right]}+\mathbb{P}_{x_{2} x_{3}}^{B} \otimes \Phi_{\nu, 12}^{\left[\Gamma \gamma^{\nu} \gamma^{\mu}\right]}
\end{aligned}
$$

- \mathbb{P} are BFLK kernels
- Υ contains $\ln (x)$
- Rapidity evolution is same as for TMD-twist- $(1,1)$

$$
\begin{aligned}
\zeta \frac{d}{d \zeta} \Phi_{\mu, 12}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b ; \mu, \zeta\right) & =-\mathcal{D}(b, \mu) \Phi_{\mu, 12}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b ; \mu, \zeta\right) \\
\zeta \frac{d}{d \zeta} \Phi_{\mu, 21}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b ; \mu, \zeta\right) & =-\mathcal{D}(b, \mu) \Phi_{\mu, 21}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b ; \mu, \zeta\right)
\end{aligned}
$$

Evolution equations for TMD-twist-(1,2) and (2,1) distribution

$$
\begin{aligned}
& \mu^{2} \frac{d}{d \mu^{2}} \Phi_{\mu, 21}^{[\Gamma]}=\left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{1} x_{2} x_{3}}+2 \pi i s \Theta_{x_{1} x_{2} x_{3}}\right) \Phi_{\mu, 21}^{[\Gamma]} \\
&+\mathbb{P}_{x_{2} x_{1}}^{A} \otimes \Phi_{\nu, 21}^{\left[\gamma^{\nu} \gamma^{\mu} \Gamma\right]}+\mathbb{P}_{x_{2} B}^{B} \otimes \Phi_{\nu, 2]}^{\left[/ \mu_{1},{ }_{2}\right]}, \\
& \mu^{2} \frac{d}{d \mu^{2}} \Phi_{\mu, 12}^{[\Gamma]}=\left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{3} x_{2} x_{1}}+2 \pi i s \Theta_{x_{3} x_{2} x_{1}}\right) \Phi_{\mu, 12}^{[\Gamma]} \\
&+\mathbb{P}_{x_{2} x_{3}}^{A} \otimes \Phi_{\nu, 12}^{\left[\Gamma \gamma^{\mu} \gamma^{\nu}\right]}+\mathbb{P}_{x_{2} x_{3}}^{B} \otimes \Phi_{\nu, 12}^{\left[\Gamma \gamma^{\prime} \gamma^{\mu}\right]}
\end{aligned}
$$

Imaginary-part of collinear logarithms

- Discontinious
- Process dependent!

$$
\Theta_{x_{1} x_{2} x_{3}}=a_{s} \times \begin{cases}\frac{C_{A}}{2} & x_{1,2,3} \in(+,-,-), \\ -\left(C_{F}-\frac{C_{A}}{2}\right) & x_{1,2,3} \in(+,-,+), \\ 0 & x_{1,2,3} \in(-,-,+), \\ -\frac{C_{A}}{2} & x_{1,2,3} \in(-,+,+), \\ C_{F}-\frac{C_{A}}{2} & x_{1,2,3} \in(-,+,-), \\ 0 & x_{1,2,3} \in(+,+,-),\end{cases}
$$

