Parton distribution functions from lattice QCD: facts and fancy

Sara Collins

Universität Regensburg

RQCD Collaboration: G. Bali, V. Braun, A. Schäfer, E. Scholz, W. Söldner, M. Göckeler, P. Wein, T. Wurm, D. Jenkins, S. Bürger, S. Weishäupl, L. Walter, M. Gruber, P. Korcyl, A. Sternbeck, ...

FOR2926 workshop, Regensburg Feb. 16th 2023

Overview

Moments of PDFs

- ★ Lattice details
- \star Results for lowest two moments of helicity, transversity, unpolarised PDFs
- \star Phenomenological analysis of transversity with lattice constraints
- \star Matrix elements of higher twist operators

Position space lattice methods

- ★ Quasi- and pseudo-PDFs
- ★ Challenges
- ★ Results for the isovector helicity, transversity, unpolarised PDFs.

Moments of PDFs

Mellin moment *n*, example of unpolarised PDF:

$$\langle x^{n-1}(\mu) \rangle_{q^{(-)^n}} = \int_0^1 \mathrm{d}x \, x^{n-1} \left[q(x,\mu) + (-)^n \bar{q}(x,\mu) \right]$$

OPE connects the moments to matrix elements of local operators

$$\langle N(p) \left| \left[\mathcal{O}_{\mu_1 \dots \mu_n}^n \right] \right| N(p) \rangle = \langle N(p) \left| \left[\mathcal{O}^n \right] \right| N(p) \rangle \left(\left(p_{\mu_1} \cdots p_{\mu_n} \right) - \text{traces} \right) \\ \langle x^{n-1} \rangle_{q^{(-)^n}} \sim \langle N(p) \left| \left[\mathcal{O}^n \right] \right| N(p) \rangle \\ \mathcal{O}_{\mu_1 \dots \mu_n}^n = \bar{q} \gamma_{(\mu_1} i \overleftrightarrow{D}_{\mu_2} \dots i \overleftrightarrow{D}_{\mu_n}) q$$

where $(\mu_1 \cdots)$: symmetrized, traceless.

Different flavour combinations are possible, also gluonic operators. Second moment (n = 2, $\langle x \rangle_{q^+}$) has one derivative (dimension 4 operator). Note that there are no higher twist corrections but $\mathcal{O}(a)$ lattice corrections: continuum limit $a \to 0$.

Lattice scheme: if mixing with lower $n' = n - \ell$ is not prohibited by symmetry $\Rightarrow a^{-\ell}$ power divergencies! This (and statistical noise) complicates n > 3. Notation [PDFLattice,1711.07916]: $q^- := q - \bar{q} (= q_v)$, $q^+ := q + \bar{q} (= q_v + 2\bar{q})$.

Lattice details: computing $\langle N | \mathcal{O} | N \rangle$ in the isospin limit.

Isovector combinations only connected. Isoscalar also disconnected (computationally more expensive, additional stochastic noise).

Steps in the analysis:

- Fit the two and three-point correlation functions
- ▶ Renormalisation+ improvement: for $\vec{p} = \vec{p}' = 0$ /some operators/actions $c_{\mathcal{O}} = 0$ or $b_{\mathcal{O}} = 0$ $\mathcal{O}^{\overline{\text{MS}}}(\mu) = Z_{\mathcal{O}}^{\overline{\text{MS}},latt}(a\mu) \left[(1 + b_{\mathcal{O}} am_q) \mathcal{O}^{latt} + ac_{\mathcal{O}} \mathcal{O}_1^{latt} \right]$ Non-perturbative matching: lattice $\rightarrow \text{RI'-(S)MOM}$ scheme, Perturbative: RI'-(S)MOM $\rightarrow \overline{\text{MS}}$ (typically 3-loop, 4-loop is desirable).

Repeat analysis on several ensembles to explore

- Finite volume effects: exponentially suppressed $\sim m_{\pi}^2 e^{-Lm_{\pi}}/(m_{\pi}L)^{3/2}$, $Lm_{\pi} > 4$.
- Discretisation effects: $\mathcal{O}(a)$ or $\mathcal{O}(a^2)$.
- Quark mass dependence: chiral pert. theory (ChPT) $m_{\pi} \rightarrow m_{\pi}^{phys}$.

Challenges

Lattice provides (very) precise results for (see [FLAG21,2111.09849])

▶ α_s , m_q , $q \in \{u/d, s, c, b\}$, $K \to \pi \ell \nu$, form factor at $q^2 = 0$, $f_+(0) = 0.9698(17)$, $f_K/f_\pi = 1.1932(21)$, ...

Difficulties in the baryon sector

- **Statistical noise**: signal vs noise decays with $e^{-(E-3m_{\pi}/2)\tau}$.
- **Excited state pollution**: significant since τ cannot be too large. Dense spectrum of multiparticle states at m_{π}^{phys} .
- ► Renormalisation: quark flavours mix under renormalization ($N_f = 2 + 1$): $\mathcal{O}_{u-d}(\mu) = Z_{\mathcal{O}}^{ns}(a\mu, \alpha_s)\mathcal{O}_{u-d}^{\text{latt}}(a)$ for all isovector currents. $\mathcal{O}_{u+d+s}(\mu) = Z_{\mathcal{O}}^{s}(a\mu, \alpha_s)\mathcal{O}_{u+d+s}^{\text{latt}}(a)$ for 1st moments of isosinglet.

$$\text{Isosinglet } \langle x \rangle \colon \begin{pmatrix} J_{u+d+s}(\mu) \\ GG(\mu) \end{pmatrix} = \begin{pmatrix} Z_q^s(a\mu) & N_f Z_{qg}(a\mu) \\ Z_{gq}(a\mu) & Z_g(a\mu) \end{pmatrix} \begin{pmatrix} J_{u+d+s}^{\text{latt}}(a) \\ GG(a) \end{pmatrix}$$

Quark mass dependence: not clear how well ChPT describes the quark mass dependence in the range m_π ~ (m^{phys}_π - 300 MeV).
 Need to simulate at or close to m^{phys}_π.

(Stable) baryon spectrum $N_f = 2 + 1$

Example of progress.

[BMWc,0906.3599]

[RQCD,2211.03744]: 42 ensembles, $m_\pi=$ 420 - 135 MeV, six lattice spacings, a=0.1-0.04 fm, $Lm_\pi\gtrsim$ 4, . . .

 m_N with < 1% overall uncertainty.

Lowest moments: helicity, $\langle 1 angle_{\Delta u^+ - \Delta d^+} = g_A$, $\langle 1 angle_{\Delta q^+} = g_A^q$

 g_A is a benchmark quantity, sensitive to excited state contamination, finite volume, quark mass dependence, . . .

 $\mu = 2 \text{ GeV for } g_A^q.$ [FLAG21,2111.09849]

Comparison with phenomenological fits, $\mu = 2$ GeV

RQCD 23 Weishäupl et al.

[NME21,2103.05599], [Mainz21,2103.05599] Left: [JAM22,2202.03372], [JAM17,1705.05889], [JAM15,1601.07782], [NNPDF,1406.5539], [DSSV08,0904.3821] Right: [NME,2201.00067]

Charm:
$$\langle 1 \rangle_{\Delta c^+} = -0.0026(18)$$
 [PNDME,2109.01191], $N_f = 2 + 1 + 1$
 $\langle 1 \rangle_{\Delta c^+} = -0.0098(34)$ [ETMC,1909.00485], $N_f = 2 + 1 + 1$.

Transversity,
$$\langle 1
angle_{\delta u^- - \delta d^-} = g_T$$
, $\langle 1
angle_{\delta q^-} = g_T^q$, $\mu = 2$ GeV

[FLAG21,2111.09849]

Comparison with phenomenological fits, $\mu = 2$ GeV

JAM18 and JAM22 impose lattice g_T as a constraint.

RQCD 23 Weishäupl et al.

[NME21,2103.05599], [Mainz21,2103.05599] Left: [JAM22,2205.00999], [JAM20,2002.08384], [MEX19,1912.03289], [PV18,1802.05212], [JAM18,1710.09858], [TM15,1505.05589], [TO13,1303.3822], Right: [NME,2201.00067]

Charm: $\langle 1 \rangle_{\delta c^-} = 0.0004(13)$ [PNDME,2109.01191], $N_f = 2 + 1 + 1$. $\langle 1 \rangle_{\delta c^-} = -0.00024(16)$ [ETMC,1909.00485], $N_f = 2 + 1 + 1$.

Charm:
$$\langle x \rangle_{c^+} = 0.070(25)$$
 [PNDME,2109.01191], $N_f = 2 + 1 + 1$.
 $\langle x \rangle_{c^+} = 0.019(09)$ [ETMC,1909.00485], $N_f = 2 + 1 + 1$.

[ROCD18 1812 08256]. [vOCD18 1808 08677]. [Mainz21 2110 10500]

[MMHT14,1412.3989], [HERAPDF2.0,1506.06042], [CT14,1506.07443], [CJ15,1602.03154], [ABMP16,1701.05838], [NNPDF3.1,1706.00428], [JAM19,1905.03788], [CT18,1912.10053], [PNDME20,2005.13779], [ETMC20,2003.08486], [ETMC19,1908.10706], [Mainz19,1905.01291],

Unpolarised second moment, $\mu = 2$ GeV

Global analysis of transversity with lattice constraints

Global analysis of single transverse-spin asymmetries.

Transversity PDFs h_1^u and h_1^d with anti-quark functions set to zero. Top, blue: [ETMC,1909.00485] g_T included as a data point.

0.6JAM22 0.0 $xh_1(x)$ JAM22 (no LQCD) 0.4-0.1u 0.2-0.2d 0.0-0.30.2 \boldsymbol{x} 0.40.60.80.20.40.60.8 \boldsymbol{x} 0.6JAM22 0.0 $xh_1(x)$ 0.4JAM20+ -0.10.2 \boldsymbol{u} -0.2d -0.3SB 0.00.20.40.6 0.8 \boldsymbol{x} 0.20.4 0.6 0.8 \boldsymbol{x} $\delta d_{_{\mathrm{JAM22}}}$ SB: (parton model) Goldstein et al (2014) Badici, Bacchetta (2018) JAM22 (no LOCD Hasan et al (2018) Gupta et al (2018) ort + et al (2018) JAM20-Alexandrou et al (2020) [Soffer,hep-ph/9409254] 0.0 $|h_1^q(x)| \le (q(x) + \Delta q(x))/2.$ ang et al (2015) Radici, Bacchetta -0.1sel et al (2019) To' Alesio et al (2020 -0.2JAM20-Right: $\delta q = \langle 1 \rangle_{q^{-}}$. -0.30.6 δu 1.0 1.5 2.0 gT

[JAM22,2205.00999]

Higher moments and twist: helicity

LO in OPE, third Mellin moments of the helicity structure functions g_1 and g_2

$$2\int_{0}^{1} dx \, \mathbf{x}^{2} \mathbf{g}_{1}(\mathbf{x}, \mathbf{Q}^{2}) = \frac{1}{2} \sum_{q} Q_{q}^{2} \, E_{1,2}^{(q)} \left(\frac{\mu^{2}}{Q^{2}}, \alpha_{s}(\mu)\right) \, a_{2}^{(q)}(\mu) \,,$$

$$2\int_{0}^{1} dx \, \mathbf{x}^{2} \mathbf{g}_{2}(\mathbf{x}, \mathbf{Q}^{2}) = \frac{1}{3} \sum_{q} Q_{q}^{2} \left[E_{2,2}^{(q)} \left(\frac{\mu^{2}}{Q^{2}}, \alpha_{s}(\mu)\right) \, d_{2}^{(q)}(\mu) - E_{1,2}^{(q)} \left(\frac{\mu^{2}}{Q^{2}}, \alpha_{s}(\mu)\right) \, a_{2}^{(q)}(\mu) \right]$$

Wandzura-Wilczek relation: if $d_2^q \ll a_2^q$, g_2 can be obtained from g_1 .

 $a_2^{(q)}$, twist-2 contribution to g_1 . $d_2^{(q)}$ twist-3 contribution to g_2 is not power suppressed in 1/Q. Wilson coefficients $E_{1,n}^{(q)}$ are known to 2-loop, $E_{2,n}^{(q)}$ only known at tree-level.

Both involve operators with two derivatives. Lattice: d_2 mixing with operators of lower dimension. Cancellation of 1/a contributions via renormalisation.

[RQCD,2111.08306] S. Bürger et al.: some approximations (no disconnected diagrams, ...), however, unlikely to be the main uncertainty.

Higher moments and twist: helicity

Continuum, quark mass extrapolation. $d_2^{(p)} = \left(\frac{2}{3}\right)^2 d_2^{(u)} + \left(-\frac{1}{3}\right)^2 d_2^{(d)}, \quad d_2^{(n)} = \left(-\frac{1}{3}\right)^2 d_2^{(u)} + \left(\frac{2}{3}\right)^2 d_2^{(d)}.$ Similarly for $a_2^{(p,n)}$.

Comparison with phenomenology (some approximations also made) ($\mu = 2$ GeV)

[Ref 12, E154,hep-ex/9705017], [Ref 13, E143,hep-ex/9705017], [Ref 14, E155,hep-ex/0204028], [Ref 15, JLab Hall A,hucl-ex/0405006], [Ref 15, JLab Hall A,1404.4003], [Ref 18, JLab Hall A,1404.4003], [Ref 19, SANE,1805.08835], [Ref 19, SANE,1805.08835], [Ref 10, Soipenko,hep-ph/0503018].

Previous lattice studies: [QCDSF,hep-lat/0506017], [LHPC,1001.3620], [LHPC,SESAM,hep-lat/0201021].

Position space lattice methods: quasi- and pseudo-PDFs

Evaluate 4-point function and extract matrix element with a non-local (equal time) current e.g. unpolarized case.

 $M^{0}(z,P_{3}) = \langle P | \bar{\psi}(z) \gamma^{0} W(z) \psi(0) | P \rangle, \quad P = (P_{0},0,0,P_{3}), \ z = (0,0,0,z_{3})$

Collinear factorisation used to extract information on the PDFs.

Quasi-PDFs and large-momentum effective theory (LaMET) [Ji,1305.1539]:

$$\begin{split} \tilde{q}(y, P_3) &= \int_{-\infty}^{\infty} \frac{dz}{4\pi} e^{-izyP_3} M^0(z, P_3), \\ \tilde{q}(y, P_3) &= \int_{-1}^{1} \frac{dx}{|x|} \, C^{(\tilde{q})}\left(\frac{y}{x}, \frac{xP_3}{\mu}\right) q(x, \mu^2) + \mathcal{O}\left(\frac{\Lambda_{QCD}^2}{y^2(1-y)P_3^2}\right) \end{split}$$

Off light-cone |y| > 1 possible, y no longer Bjorken-x. Higher twist effects at small and large y, range of y depends on P_3 . Position space lattice methods: quasi- and pseudo-PDFs

▶ Pseudo-PDFs [Radyushkin,1612.05170]: loffe-time $\nu = z \cdot P$.

$$\mathcal{M}^0(P,z) = 2P_0\mathcal{M}_P(\nu,z^2)$$

Off the light-cone **loffe-time distribution (ITD)** $\mathcal{M}_P(\nu, z^2)$. Related to a **Pseudo-PDF** $\mathcal{P}(x, z^2)$: $\mathcal{M}_P(\nu, z^2) = \int_{-1}^{1} dx \, e^{ix\nu} \mathcal{P}(x, z^2)$. Pseudo-PDF can be related for small $|z|^2$ (fixed ν) via factorization to PDF q(x). |x| < 1. However, the pseudo ITD is directly related to the PDF.

$$\mathcal{M}_{P}(\nu, z^{2}) = \int_{-1}^{1} dx \ C(x\nu, \mu^{2}z^{2})q(x, \mu^{2}) + O(z^{2}\Lambda^{2})$$

 $C(x\nu, \mu^2 z^2) = e^{i\nu x} + O(\alpha_s)$. z should be small, P_3 can also be small. Wide range of ν required \rightarrow large P_3 required.

Other approaches, e.g. lattice cross-sections [Ma and Qiu,1404.6860], hadronic tensor method [Liu et al.,hep-ph/9910306,1906.05312], current-current correlations [Braun and Müller,0709.1348], ...

Challenges

Achieving large momentum: with current methods (momentum smearing [RQCD,1602.05525]) reasonable signals up to $P_3 \leq 3$ GeV are achieved.

With higher P discretisation effects O(aP), $O(a^2P^2)$, can be significant \rightarrow need small a.

Signal to noise: signal of correlation functions deteriorates with large Euclidean separations (and higher P).

Excited state contamination: spectrum of states becomes even more dense for finite *P*.

Renormalisation: bare (extended) operator $\bar{\psi}(z)\gamma^0 W(z)\psi(0)$ has power divergences. Non-trivial to renormalise if z is not small. Alternative, current-current method.

Inverse problem/reaching long range correlations: discrete lattice data, over a finite range.

Quasi-PDFs: finite range of z for $\tilde{q}(y, P_3) = FT_z[M^0(z, P_3)]$

Pseudo-PDFs: finite range of ν for the inverse transform of $M^0(\nu, z^2) \rightarrow q(x, \mu)$.

Affects large x (oscillations) and small x. Less problematic as P_3 increases.

Either assumptions made or models used for the PDFs that are transformed and fitted directly to the (renormalised) lattice data.

Challenges

Perturbative matching: mostly 1-loop available (apart from current-current methods).

In addition, discretisation, finite volume, quark mass dependence effects.

Cross-checks:

- Comparison with phenomenological determinations of the PDFs. Most meaningful for lattice results at the physical point, after continuum extrapolation.
- Comparison with Mellin moments.
- Closure tests with artificial data (e.g. [Candido et al.][PoS(LATTICE2022)098]).

So far studies of isovector and flavour singlet unpolarised, helicity, transversity PDFs, gluon PDFs. Also GPDs, higher twist PDFs, TMDs, ...

Snowmass 21 review of lattice PDF calculations [Constantinou et al., 2202.07193]

Quoted aim: 5% precision or better for isovector PDFs for 0.2 < x < 0.6.

10-20% precision for flavour singlet quark and gluon PDFs.

Isovector results from the quasi-PDF approach

Unpolarised: [MSULat,2011.14971]

Helicity: [LP3,1807.07431]

[MSULat,2011.14971], [LPC,2208.08008] results at m_{π}^{phys} after continuum extrapolation. Resp. $P_3^{max} \sim 2.6$ GeV and $P_3^{max} \sim 2.8$ GeV.

[LP³,1807.07431] single m_{π}^{phys} ensemble result, a = 0.09 fm, $P_3^{max} \sim 3$ GeV.

Isovector unpolarized pseudo-PDF results

[Hadstruc,2004.01687] a = 0.09 fm, results extrapolated to m_{π}^{phys} .

Summary

 \star Lower moments of unpolarised, helicity and transversity PDFs can be computed on the lattice (for the isovector flavour combination, individual quark flavours and gluon).

★ Calculations of first moments of helicity and transversity PDFs ($\langle 1 \rangle_{\Delta q^+}$, $\langle 1 \rangle_{\delta q^-}$) and isovector second moments are reasonably mature: main sources of systematic uncertainty investigated.

 \star More results, in particular, for individual quark flavours will appear in the near future and precision will improve.

 \star Provide complementary information to experiment where low and high x-regions are not well probed.

 \star Global analyses using lattice moments as contraints can reduce uncertainties on transversity and helicity PDFs.

 \star Flavour singlet and gluon second moments: renormalisation still needs investigation.

 \star Twist two and three contributions to the second moment of helicity structure functions have been determined.

Summary

★ Position space methods face significant challenges.

★ Much progress has been made, however, new methods are required.

★ Resonable signals for larger momenta are needed \rightarrow smaller *a*, with sufficiently large volume at m_{π}^{phys} . Significant computational resources will be required.