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Overview

Moments of PDFs
* Lattice details
* Results for lowest two moments of helicity, transversity, unpolarised PDFs
* Phenomenological analysis of transversity with lattice constraints

* Matrix elements of higher twist operators

Position space lattice methods
* Quasi- and pseudo-PDFs
* Challenges

* Results for the isovector helicity, transversity, unpolarised PDFs.



Moments of PDFs

Mellin moment n, example of unpolarised PDF:

(L (1)) g = /O dx X" [, 1) + (=), )]

OPE connects the moments to matrix elements of local operators

(N(R) [0, ]| N(B)) = (N(B) [[O7]] N(B) (P~ ) — traces)
(X" g ~ (N (P)|[O 11 N(p))
O opon = Va1 Duz iﬁu )4

where (1 -+ +): symmetrized, traceless.

Different flavour combinations are possible, also gluonic operators. Second
moment (n = 2, (x)q+) has one derivative (dimension 4 operator).

Note that there are no higher twist corrections but O(a) lattice corrections:
continuum limit a — 0.

Lattice scheme: if mixing with lower n’ = n — £ is not prohibited by symmetry
= a~* power divergencies! This (and statistical noise) complicates n > 3.
Notation [PDFLattice,1711.07916]: ¢~ :=qg—g(=qv), 47 =g+ G (= q. + 23).



Lattice details: computing (N|O|N) in the isospin limit.

e

Isovector combinations only connected. Isoscalar also disconnected (computationally

more expensive, additional stochastic noise).
Steps in the analysis:
» Fit the two and three-point correlation functions
> Renormalisation+ improvement: for 5= ' = 0/some operators/actions o = 0 or by = 0
OMS (1) = ZX>"" (ap) [(1 + boamg)OPtt + aco OFH]
Non-perturbative matching: lattice — RI’-(S)MOM scheme,
Perturbative: RI'-(S)MOM — MS (typically 3-loop, 4-loop is desirable).

Repeat analysis on several ensembles to explore
> Finite volume effects: exponentially suppressed ~ m2e~™= /(m, L)3/?,
Lm, > 4.
> Discretisation effects: O(a) or O(a?).
» Quark mass dependence: chiral pert. theory (ChPT) m, — mPhs.



Challenges

Lattice provides (very) precise results for (see [FLAG21,2111.09849])

>

as, Mg, q € {u/d,s,c, b}, K — wlv, form factor at ¢*> = 0,
f.(0) = 0.9698(17), fic/f, = 1.1932(21), ...

Difficulties in the baryon sector

>
>

>

Statistical noise: signal vs noise decays with e (E=3m=/2)7

Excited state pollution: significant since 7 cannot be too large. Dense
spectrum of multiparticle states at mPhs.

Renormalisation: quark flavours mix under renormalization (Nf =2 + 1):
Ou_da(p) = Z& (ap, as) 0, (a) for all isovector currents.
Ourass(p) = Zo(ap, as)O2L5, (a) for 1st moments of isosinglet.

natet ey (v ) _ [ Zalaw)  NeZoglan) ) (5(2)
Isosinglet (x): ( 66(s) ) - (zgq(?l) Ze(on) )( 66(a) )

Quark mass dependence: not clear how well ChPT describes the quark
mass dependence in the range m, ~ (mPhs — 300 MeV).

Need to simulate at or close to mP"s.



(Stable) baryon spectrum Nf =2 +1

Example of progress.
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mpy with < 1% overall uncertainty.



Lowest moments: helicity, (1)au+—ng+ = ga, (1)ag+ = 84

ga is a benchmark quantity, sensitive to excited state contamination, finite
volume, quark mass dependence, ...
1 =2 GeV for gi. [FLAG21,2111.09849]
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Comparison

with phenomenological fits, u = 2 GeV
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Transversity, (1)s5,-—sa- = &7, (1)sq- = g%, 1t = 2 GeV

[FLAG21,2111.09849]
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Comparison with phenomenological fits, 1 = 2 GeV

JAM18 and JAM22 impose lattice gr as a constraint.
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Unpolarised second moment, p = 2 GeV
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Global analysis of transversity with lattice constraints

Global analysis of single transverse-spin asymmetries.

Transversity PDFs hY and h¢ with anti-quark functions set to zero.
Top, blue: [ETMC,1909.00485] g7 included as a data point.
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Higher moments and twist: helicity

LO in OPE, third Mellin moments of the helicity structure functions g; and g

2/0 dXX gl(X 02) = 2 ZQ (027065(/1’)) (“)7
/ dx x’g(x, Q) = 3 Zo (ans(u)) d;” () — E{3 (&m(u)) 2" (u

Wandzura-Wilczek relation: if dj < a3, g» can be obtained from g.

agq), twist-2 contribution to gi. dz(q) twist-3 contribution to g» is not power
suppressed in 1/Q. Wilson coefficients El(f’n) are known to 2-loop, Ez(:’n) only

known at tree-level.

Both involve operators with two derivatives. Lattice: d, mixing with operators
of lower dimension. Cancellation of 1/a contributions via renormalisation.

[RQCD,2111.08306] S. Birger et al.: some approximations (no disconnected
diagrams, ...), however, unlikely to be the main uncertainty.



Higher moments and twist: helicity

Continuum, quark mass extrapolation.
dz(P) = (%)2 déu) + (—%)2 déd) s dé") = (—%)2 dz(U) + (%)2 déd) . Similarly for agp’").
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Position space lattice methods: quasi- and pseudo-PDFs

Evaluate 4-point func- W(Z)§>
tion and extract matrix
element with a non-local W)

(equal time) current e.g. —_ w60 NE @Wm

unpolarized case.

MO(z, P3) = (P|(2)y°W(2)¥(0)|P), P =(Po,0,0,P3), z=(0,0,0,z3)
Collinear factorisation used to extract information on the PDFs.

» Quasi-PDFs and large-momentum effective theory (LaMET) [Ji,1305.1539]:
a(y P3) — - Eefizyl% MO(Z P3)
) . 47'[' ) )

1 2

. dx y xPs Noco )
,P3) = = ct +0 | —"——=

a(y, Ps) /_1 x| (X " ) q(x; %) <y2(1 Y=

Off light-cone |y| > 1 possible, y no longer Bjorken-x.
Higher twist effects at small and large y, range of y depends on Ps.



Position space lattice methods: quasi- and pseudo-PDFs

» Pseudo-PDFs [Radyushkin,1612.05170]: loffe-time v = z - P.
MO(P, z) = 2Py Mp(v, 2°)

Off the light-cone loffe-time distribution (1ITD) Mp(v, z?).

Related to a Pseudo-PDF P(x, z2): Mp(v,z?) = f_ll dx e*P(x,z?).
Pseudo-PDF can be related for small |z|? (fixed v) via factorization to PDF
q(x). |x| < 1. However, the pseudo ITD is directly related to the PDF.

1
Me(2%) = [ ok Cloavs 2 2)qlx, %) + O(2NY)
—1

C(xv, u?z%) = e"* + O(as). z should be small, P3 can also be small.
Wide range of v required — large P3 required.

Other approaches, e.g. lattice cross-sections [Ma and Qiu,1404.6860], hadronic

tensor method [Liu et al.,hep-ph/9910306,1906.05312], current-current correlations
[Braun and Miiller,0709.1348], ...



Challenges

Achieving large momentum: with current methods (momentum smearing
[RQCD,1602.05525]) reasonable signals up to P3 < 3 GeV are achieved.

With higher P discretisation effects O(aP), O(a?P?), can be significant — need
small a.

Signal to noise: signal of correlation functions deteriorates with large Euclidean
separations (and higher P).

Excited state contamination: spectrum of states becomes even more dense
for finite P.

Renormalisation: bare (extended) operator (z)y*W/(z)v(0) has power
divergences. Non-trivial to renormalise if z is not small. Alternative,
current-current method.

Inverse problem/reaching long range correlations: discrete lattice data, over
a finite range.

Quasi-PDFs: finite range of z for g(y, P3) = FT.[M°(z, P3)]

Pseudo-PDFs: finite range of v for the inverse transform of M°(v, z%) — q(x, ).
Affects large x (oscillations) and small x. Less problematic as Ps increases.
Either assumptions made or models used for the PDFs that are transformed and
fitted directly to the (renormalised) lattice data.



Challenges

Perturbative matching: mostly 1-loop available (apart from current-current
methods).

In addition, discretisation, finite volume, quark mass dependence effects.

Cross-checks:

» Comparison with phenomenological determinations of the PDFs. Most
meaningful for lattice results at the physical point, after continuum
extrapolation.

» Comparison with Mellin moments.
» Closure tests with artificial data (e.g. [Candido et al.][PoS(LATTICE2022)098]).

So far studies of isovector and flavour singlet unpolarised, helicity, transversity
PDFs, gluon PDFs. Also GPDs, higher twist PDFs, TMDs, ...

Snowmass 21 review of lattice PDF calculations [Constantinou et al.,2202.07193]
Quoted aim: 5% precision or better for isovector PDFs for 0.2 < x < 0.6.

10 — 20% precision for flavour singlet quark and gluon PDFs.



Isovector results from the quasi-PDF approach

Unpolarised: [MSULat,2011.14971]
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results at mP"s after continuum extrap-
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[LP®,1807.07431] single mPhs ensemble
result, a = 0.09 fm, P"™ ~ 3 GeV.
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Isovector unpolarized pseudo-PDF results

[Hadstruc,2004.01687] a = 0.09 fm, results extrapolated to mPhs.
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Summary

* Lower moments of unpolarised, helicity and transversity PDFs can be
computed on the lattice (for the isovector flavour combination, individual quark
flavours and gluon).

* Calculations of first moments of helicity and transversity PDFs ((1)aq+,
(1)sq-) and isovector second moments are reasonably mature: main sources of
systematic uncertainty investigated.

* More results, in particular, for individual quark flavours will appear in the near
future and precision will improve.

* Provide complementary information to experiment where low and high
x-regions are not well probed.

* Global analyses using lattice moments as contraints can reduce uncertainties
on transversity and helicity PDFs.

* Flavour singlet and gluon second moments: renormalisation still needs
investigation.

* Twist two and three contributions to the second moment of helicity structure
functions have been determined.



Summary

* Position space methods face significant challenges.
* Much progress has been made, however, new methods are required.

* Resonable signals for larger momenta are needed — smaller a, with sufficiently
large volume at mP"s. Significant computational resources will be required.



